Skip to main content
Log in

Sequential importance sampling of binary sequences

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Two sequential methods are described for sampling constrained binary sequences from partial solutions. The backward method computes elimination ideals over finite fields and constructs partial solutions that extend. The forward method uses numerical global optimization to determine which partial solutions extend. The methods are applied to restricted orderings, binary dynamics, and random graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Admiraal, R., Handcock, M.S.: Networksis: a package to simulate bipartite graphs with fixed marginals through sequential importance sampling. J. Stat. Softw. 24, 1–21 (2008)

    Google Scholar 

  • Agresti, A., Mehta, C.R., Patel, N.R.: Exact inference for contingency tables with ordered categories. J. Am. Stat. Assoc. 85, 453–458 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223, 1–18 (2003)

    Article  MathSciNet  Google Scholar 

  • Aracena, J.: Maximum number of fixed points in regulatory Boolean networks. Bull. Math. Biol. 70, 1398–1409 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Blitzstein, J., Diaconis, P.: A sequential importance sampling algorithm for generating random graphs with prescribed degrees. Stanford University Technical Report (2006)

  • Breiman, L., Cutler, A.: A deterministic algorithm for global optimization. Math. Program. 58, 179–199 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Butts, C.T., Handcock, M.S., Hunter, D.R.: Network: Classes for Relational Data. R package version 1.4-1. Irvine, CA (2008). http://statnet.org/

  • Chen, Y.: Conditional inference on tables with structural zeros. J. Comput. Graph. Stat. 16, 445–467 (2007)

    Article  Google Scholar 

  • Chen, Y., Liu, J.S.: Sequential Monte Carlo methods for permutation tests on truncated data. Stat. Sin. 17, 857–872 (2007)

    MATH  Google Scholar 

  • Chen, Y., Diaconis, P., Holmes, S.P., Liu, J.S.: Sequential Monte Carlo methods for statistical analysis of tables. J. Am. Stat. Assoc. 100, 109–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D., Little, J., O’Shea, D.: Ideal, Varieties, and Algorithms, 2nd edn. Springer, New York (1997)

    Google Scholar 

  • Diaconis, P., Graham, R., Holmes, S.P.: Statistical problems involving permutations with restricted positions. In: State of the Art in Probability and Statistics, Leiden, 1999. IMS Lecture Notes Monogr. Ser., vol. 36, pp. 195–222. Inst. Math. Statist., Beachwood (2001)

    Chapter  Google Scholar 

  • Dinwoodie, I.H.: Polynomials for classification trees and applications. SAMSI Technical Report 2008-7 (2008)

  • Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3.0.4. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2007). URL http://www.singular.uni-kl.de

  • Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Handcock, M.S., Hunter, D.R., Butts, C.T., Goodreau, S.M., Morris, M.: ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Version 2.2-1 (2009). Project home page at http://statnetproject.org. URL http://CRAN.R-project.org/package=ergm

  • Huber, M.: Fast perfect sampling from linear extensions. Discrete Math. 306, 420–428 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Kreuzer, M., Robbiano, L.: Computational Commutative Algebra I. Springer, New York (2000)

    Book  MATH  Google Scholar 

  • LaCruz, W., Martinez, J.M., Raydan, M.: Spectral residue method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75, 1429–1448 (2006)

    Article  MathSciNet  Google Scholar 

  • Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2001)

    MATH  Google Scholar 

  • Matthews, P.: Generating a random linear extension of a partial order. Ann. Probab. 19, 1367–1392 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Mendoza, L., Alvarez-Buylla, E.R.: Dynamics of the genetic regulatory network for Arabidopsis thaliana. J. Theor. Biol. 193, 307–319 (1998)

    Article  Google Scholar 

  • Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  • Pevzner, P.A.: Computational Molecular Biology. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  • Pistone, G., Riccomagno, E., Wynn, H.: Algebraic Statistics: Computational Commutative Algebra in Statistics. Chapman and Hall, New York (2001)

    MATH  Google Scholar 

  • R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2009). ISBN 3-900051-07-0, URL http://www.R-project.org

    Google Scholar 

  • Roberts, F.S., Tesman, B.: Applied Combinatorics. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  • Robins, G., Snijders, T., Wang, P., Handcock, M., Pattison, P.: Recent developments in exponential random graph (p ) models for social networks. Soc. Netw. 29, 192–215 (2007)

    Article  Google Scholar 

  • Rubinstein, R.: Randomized algorithms with splitting: why the classic randomized algorithms do not work and how to make them work. Methodol. Comput. Appl. Probab. 12, 1–50 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Snijders, T.A.B.: Enumeration and simulation methods for 0–1 matrices with given marginals. Psychometrika 56, 397–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Varadhan, R., Gilbert, P.D.: BB: An R package for solving a large system of nonlinear equations and for optimizing a high-dimensional nonlinear objective function (version 2010.4-1). J. Stat. Softw. 32, 1–26 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian H. Dinwoodie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinwoodie, I.H. Sequential importance sampling of binary sequences. Stat Comput 22, 53–63 (2012). https://doi.org/10.1007/s11222-010-9205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-010-9205-0

Keywords

Navigation