Skip to main content
Log in

Statistical inference for a single-index varying-coefficient model

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

We investigate the estimators of parameters of interest for a single-index varying-coefficient model. To estimate the unknown parameter efficiently, we first estimate the nonparametric component using local linear smoothing, then construct an estimator of parametric component by using estimating equations. Our estimator for the parametric component is asymptotically efficient, and the estimator of nonparametric component has asymptotic normality and optimal uniform convergence rate. Our results provide ways to construct confidence regions for the involved unknown parameters. The finite-sample behavior of the new estimators is evaluated through simulation studies, and applications to two real data are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnold, S.f.: The Theory of Linear Models and Multivariate Analysis. Wiley, New York (1981)

    MATH  Google Scholar 

  • Cai, Z.W., Fan, J.Q., Li, R.Z.: Efficient estimation and inferences for varying-coefficient models. J. Am. Stat. Assoc. 95, 888–902 (2000a)

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, Z., Fan, J., Yao, Q.: Functional-coefficient regression models for nonlinear time series. J. Am. Stat. Assoc. 95, 941–956 (2000b)

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll, R.J., Fan, J., Gijbels, I., Wand, M.P.: Generalized partially linear single-index models. J. Am. Stat. Assoc. 92, 477–489 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, Z.Q., Xue, L.G., Zhu, L.X.: On an asymptotically more efficient estimation of the single-index model. J. Multivar. Anal. 101, 1898–1901 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, R., Tsay, S.: Functional-coefficient autoregressive models. J. Am. Stat. Assoc. 88, 298–308 (1993)

    MathSciNet  MATH  Google Scholar 

  • Chiou, J.M., Müller, H.G.: Quasi-likelihood regression with unknown link and variance functions. J. Am. Stat. Assoc. 93, 1376–1387 (1998)

    Article  MATH  Google Scholar 

  • Cui, X., Härdle, W.K., Zhu, L.X.: The EFM approach for single-index models. Ann. Stat. 39(3), 1658–1688 (2011)

    Article  MATH  Google Scholar 

  • Diggle, P.J.: Time Series: A Biostatistical Introduction. Oxford University Press, Oxford (1990), pp. 387

    MATH  Google Scholar 

  • Doukhan, P., Massart, P., Rio, E.: Invariance principles for absolutely regular empirical processes. Ann. Inst. Henri Poincaré Probab. Stat. 31, 393–427 (1995)

    MathSciNet  MATH  Google Scholar 

  • Fan, J., Gijbels, I.: Local Polynomial Modeling and Its Applications. Chapman and Hall, London (1996)

    Google Scholar 

  • Fan, J.Q., Yao, Q.W., Cai, Z.W.: Adaptive varying-coefficient linear models. J. R. Stat. Soc. B 65, 57–80 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, J.Q., Zhang, W.Y.: Statistical estimation in varying-coefficient models. Ann. Stat. 27, 1491–1518 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle, W., Hall, P., Ichimura, H.: Optimal smoothing in single-index models. Ann. Stat. 21, 157–178 (1993)

    Article  MATH  Google Scholar 

  • Hastie, T.J., Tibshirani, R.: Varying-coefficient models. J. R. Stat. Soc. B 55, 757–796 (1993)

    MathSciNet  MATH  Google Scholar 

  • Huang, J.Z., Shen, H.P.: Functional coefficient regression models for nonlinear time series: a polynomial spline approach. Scand. J. Stat. 31, 515–535 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Hristache, M., Juditsky, A., Spokoiny, V.: Direct estimation of the index coefficient in a single-index model. Ann. Stat. 29, 595–623 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Ichimura, H.: Semiparametric least squares(SLS) and weighted SLS estimation of single-index models. J. Econom. 58, 71–120 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, K.C.: Sliced inverse regression for dimension reduction (with discussion). J. Am. Stat. Assoc. 86, 316–342 (1991)

    Article  MATH  Google Scholar 

  • Loève, M.: Probability Theory I, 4th edn. Springer, Berlin (2000)

    Google Scholar 

  • Lu, Z.D., Tjøstheim, D., Yao, Q.W.: Adaptive varying-coefficient linear models for stochastic processes: Asymptotic theory. Stat. Sin. 17, 177–197 (2007)

    MATH  Google Scholar 

  • Masry, E., Tjøstheim, D.: Nonparametric estimation and identification of nonlinear ARCH time series: Strong convergence and asymptotic normality. Econom. Theory 11, 258–289 (1995)

    Article  Google Scholar 

  • Rio, E.: The functional law of the iterated logarithm for stationary strongly mixing sequence. Ann. Probab. 23, 1188–1203 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Stute, W.: A law for the logarithm of kernel density estimators. Ann. Probab. 10, 414–422 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, J.L., Xue, L.G., Zhu, L.X., Chong, Y.S.: Estimation for a partial-linear single-index model. Ann. Stat. 38, 246–274 (2010)

    MathSciNet  MATH  Google Scholar 

  • Wang, Q.H., Xue, L.G.: Statistical inference partially-varying-coefficient single-index model. J. Multivar. Anal. 102, 1–19 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Weisberg, S., Welsh, A.H.: Adapting for the missing linear link. Ann. Stat. 22, 1674–1700 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, C.O., Chiang, C.T., Hoover, D.R.: Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data. J. Am. Stat. Assoc. 93, 1388–1402 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Xia, Y.C., Li, W.K.: On single-index coefficient regression models. J. Am. Stat. Assoc. 94, 1275–1285 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Xia, Y., Tong, H., Li, W.K., Zhu, L.X.: An adaptive estimation of dimension reduction space. J. R. Stat. Soc. B 64, 363–410 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Xue, L.G., Wang, Q.H.: Empirical likelihood for single-index varying-coefficient models. Bernoulli (2012, to appear)

  • Xue, L.G., Zhu, L.X.: Empirical likelihood for single-index model. J. Multivar. Anal. 97, 1295–1312 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Xue, L.G., Zhu, L.X.: Empirical likelihood for a varying coefficient model with longitudinal data. J. Am. Stat. Assoc. 102, 642–654 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, L.X., Fang, K.T.: Asymptotics for the kernel estimates of sliced inverse regression. Ann. Stat. 24, 1053–1067 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, Y., Ruppert, D.: Penalized spline estimation for partially linear single-index models. J. Am. Stat. Assoc. 97, 1042–1054 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful for the many detailed suggestions of the editor, the associate editor and the referees, which led to significant improvements of the paper.

Liugen Xue’s research was supported by the National Natural Science Foundation of China (11171012), the Science and Technology Project of the Faculty Adviser of Excellent Ph.D. Degree Thesis of Beijing (20111000503) and the Beijing Municipal Education Commission Foundation (KM201110005029). Zhen Pang’s research was supported by a grant from the Ministry of Education, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liugen Xue.

Appendix

Appendix

The following Lemma 1 is similar to Lemma 2 of Xia and Li (1999).

Lemma 1

Suppose that φ(u) is a bounded function and has bounded derivatives on the closed interval [a,b], and that {(U i ,ξ i )} is a strictly stationary and strongly mixing sequence with mixing coefficient α(n)=O(ρ n) for some 0<ρ<1. E|U i |r<∞, E|ξ i |r<∞ for all r>1, and the conditional densities \(f_{U_{1},U_{l}|\xi_{1},\xi_{l}}(u_{1},u_{l}|v_{1},v_{l})\) and \(f_{U_{1}|\xi_{1}}(u|v)\) are bounded for all l>1. If (C5) hold, then

where ψ i (u)=K h (U i u)φ(U i )ξ i .

Proof of Theorem 1

By (2.6) and Lemma 1, and similar to the proof of Theorem 2 in Wang and Xue (2011), we can prove Theorem 1, and hence omit its proof. □

Let \(\mathcal{B}_{n}^{(r)}=\{\beta^{(r)}: \|\beta^{(r)}-\beta_{0}^{(r)}\|\leq c_{2}n^{-1/2}\}\) for some positive constant c 2. Denote \(\mathcal{G}=\{{\mathrm{g}}: \mathcal{U}_{w}\times\mathcal{B}\mapsto R^{q}\}\) and \(\|{\mathrm{g}}\|_{\mathcal{G}}=\sup_{u\in\mathcal{U}_{w},\beta^{(r)}\in \mathcal{B}_{n}^{(r)}}\|{\mathrm{g}}(u;\beta(\beta^{(r)})\|\). Since ∥ββ 0∥≤c 1 n −1/2 and \(\|\beta^{(r)}-\beta_{0}^{(r)}\|\leq c_{2}n^{-1/2}\) are equivalent when ∥β∥=1, from Theorem 1 we have \(\|\hat{\mathrm{g}}-{\mathrm{g}}_{0}\|_{\mathcal{G}}=o_{P}(1)\) and \(\|\hat{\dot{\mathrm{g}}}-\dot{\mathrm{g}}_{0}\|_{\mathcal{G}}=o_{P}(1)\), hence we can assume that g lie in \(\mathcal{G}_{\delta}\) with δ=δ n →0 and δ>0, where

$$ \mathcal{G}_{\delta}=\bigl\{{\mathrm{g}}\in\mathcal{G}: \|{\mathrm {g}}-{\mathrm{g}}_0\|_{\mathcal{G}}\leq \delta,\|\dot{\mathrm{g}}- \dot{\mathrm{g}}_0\|_{\mathcal{G}}\leq\delta \bigr\}. $$
(A.1)

Let \({\mathrm{g}}_{0}(\beta^{T}X;\beta)=E\{{\mathrm{g}}_{0}(\beta _{0}^{T}X)|\beta^{T}X\}\), \(\dot{\mathrm{g}}_{0}(\beta^{T}X;\beta)= E\{\dot{\mathrm{g}}_{0}(\beta_{0}^{T}X)|\beta ^{T}X\}\),

and

(A.2)

It is easily known that \(\mathrm{g}_{0}(\beta_{0}^{T}X;\beta_{0})=\mathrm{g}_{0} (\beta_{0}^{T}X)\), \(\dot{\mathrm{g}}_{0}(\beta_{0}^{T}X;\beta_{0})=\dot{\mathrm{g}}_{0}(\beta_{0}^{T}X)\). Define the functional derivative ϖ(g0(⋅;β),β (r)) of Q(ĝ,β (r)) with respect to g(⋅;β) at g0(⋅;β) in the direction g(⋅;β)−g0(⋅;β) by

We have

(A.3)

Lemma 2

Suppose that conditions (C1)–(C6) hold. Then

$$ \sup_{\beta^{(r)}\in\mathcal{B}_n^{(r)}} \bigl\|M_1\bigl(\beta^{(r)} \bigr)\bigr\| = o_P\bigl(n^{-1/2}\bigr), $$
(A.4)
$$ \sup_{\beta^{(r)}\in\mathcal{B}_n^{(r)}}\bigl\|M_2\bigl(\beta^{(r)} \bigr)\bigr\| = o_P\bigl(n^{-1/2}\bigr), $$
(A.5)
$$ \sup_{\beta^{(r)}\in\mathcal{B}_n^{(r)}} \bigl\|M_3\bigl(\beta^{(r)} \bigr)\bigr\| = o\bigl(n^{-1/2}\bigr), $$
(A.6)
$$ \sqrt{n}M_4\bigl(\beta_0^{(r)} \bigr)\stackrel{D}{\longrightarrow}N\bigl(0,\sigma^2{A}\bigr), $$
(A.7)

where A is defined in Theorem 2,

Proof

We first prove (A.4). Denote \(r_{n}({\mathrm{g}},\beta^{(r)})= \sqrt{n}\{Q_{n}({\mathrm{g}},\beta ^{(r)})-Q({\mathrm{g}},\beta ^{(r)})\}\). Noting that \(Q({\mathrm{g}}_{0},\beta_{0}^{(r)})=0\), we clearly have

$$ M_1\bigl(\beta^{(r)}\bigr) = n^{-1/2} \bigl\{r_n\bigl({\mathrm{g}},\beta^{(r)}\bigr)-r_n \bigl({\mathrm{g}}_0,\beta_0^{(r)}\bigr)\bigr\}. $$
(A.8)

It can be shown that the empirical process \(\{r_{n}({\mathrm{g}},\beta^{(r)}):{\mathrm{g}}\in\mathcal{G}_{1},\beta ^{(r)}\in\mathcal{B}_{1}^{(r)}\}\) has the stochastic equicontinuity, where \(\mathcal{B}_{1}^{(r)}=\{\beta^{(r)}: \|\beta^{(r)}-\beta^{(r)}_{0}\|\leq c_{2}\}\) and \(\mathcal{G}_{1}\) are defined in (A.1) with δ=1, which are subsets of \(\mathcal{B}\) and \(\mathcal{G}\), respectively, and suffices for proof of (A.4) as δ<1 for n large enough by δ→0. This stochastic equicontinuity follows by checking the conditions of Theorem 1 in Doukhan et al. (1995). Therefore, we have \(r_{n}({\mathrm{g}},\beta^{(r)})-r_{n}({\mathrm{g}}_{0},\beta_{0}^{(r)})=o_{P}(1)\), uniformly for \({\mathrm{g}}\in\mathcal{G}_{1}\) and \(\beta^{(r)}\in\mathcal{B}_{1}^{(r)}\). This together with (A.8) proves (A.4).

We now prove (A.5). It follows from (A.3) that

Therefore, from Theorem 1 we can prove (A.5).

From condition (C2) and Theorem 1, it is easy to prove (A.6). We now prove (A.7). Let f 0(u) denote the density function of \(\beta_{0}^{T}X\). Similar to the proof of Theorem 1 in Wang and Xue (2011), we can prove

(A.9)

uniformly for \(u\in\mathcal{U}_{w}\) and \(\beta\in\mathcal{B}_{n}^{(r)}\), where c n =n −1/2+h 2 and D(u) is defined in condition (C6).

By (A.3) and using the dominated convergence theorem (Loève 2000), we can obtain

where C(⋅) and μ 2 are defined in (C6) and Theorem 3, respectively. This together with (A.2) and the definition of \(M_{4}(\beta_{0}^{(r)})\) proves that

where \(\zeta_{i}=V_{i} - {C}(\beta_{0}^{T}X_{i}){D}^{-1}(\beta_{0}^{T}X_{i})Z_{i}\) and \(V_{i}= J_{\beta_{0}^{(r)}}^{T}X_{i}\dot{\mathrm{g}}_{0}^{T}(\beta _{0}^{T}X_{i})Z_{i}w(\beta_{0}^{T}X_{i})\). Therefore, by the central limit theorem for dependent data (Rio 1995) and Slutsky’s theorem, we get

$$\sqrt{n}M_4(\hat{\mathrm{g}},\beta_0)= \frac{1}{\sqrt{n}} \sum_{i=1}^n\varepsilon_i \zeta_i+o_P(1) \stackrel{D}{\longrightarrow}N\bigl(0, \sigma^2{A}\bigr). $$

This proves (A.7). The proof of Lemma 2 is completed. □

Proof of Theorem 2

Using the notations of Lemma 2, we have

(A.10)

In light of \(Q({\mathrm{g}}_{0},\beta_{0}^{(r)})=0\), we have by the Taylor expansion that

$$ Q\bigl({\mathrm{g}}_0,\beta^{(r)}\bigr) = -{B}\bigl(\beta^{(r)}-\beta^{(r)}_0 \bigr)+o_P\bigl(n^{-1/2}\bigr), $$
(A.11)

uniformly for \(\beta^{(r)}\in\mathcal{B}_{n}^{(r)}\). By (A.10), (A.11) and (A.4)–(A.6) of Lemma 2, we have

$$Q_n\bigl(\hat{\mathrm{g}},\beta^{(r)}\bigr)=M_4 \bigl(\beta_0^{(r)}\bigr) - {B}\bigl({\beta}^{(r)}- \beta_0^{(r)}\bigr) + o_P\bigl(n^{-1/2} \bigr), $$

uniformly for \({\mathrm{g}}\in\mathcal{G}_{\delta}\) and \(\beta ^{(r)}\in\mathcal{B}_{n}\). Noting that \(Q_{n}(\hat{\mathrm{g}},\hat{\beta}^{(r)})=0\), from the foregoing equation we get

$$ \hat{\beta}^{(r)}-\beta^{(r)}_0 = {B}^{-1}M_4\bigl(\beta_0^{(r)}\bigr) + o_P\bigl(n^{-1/2}\bigr). $$
(A.12)

We now consider the estimator \(\hat{\beta}\). By simple calculation, we have

$$ \hat{\beta}-\beta_0={J}_{\beta_0^{(r)}} \bigl(\hat{ \beta }^{(r)}-\beta_0^{(r)} \bigr)+O_P \bigl(n^{-1} \bigr). $$
(A.13)

From (A.12) and (A.13), we have

$$\sqrt{n}(\hat{\beta}-\beta_0)=\sqrt{n}\,{J}_{\beta_0^{(r)}}{B }^{-1}M_4\bigl(\beta^{(r)}_0\bigr) + o_P(1). $$

This together with (A.7) of Lemma 2 proves Theorem 2. □

Proof of Theorem 3

By (A.9) and Theorem 4.4 of Masry and Tjøstheim (1995), we can complete the proof of Theorem. □

The proof of Theorem 4 is similar to the proof of the second part of Theorem 2 in Xia and Li (1999), and hence the detail is omitted.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, L., Pang, Z. Statistical inference for a single-index varying-coefficient model. Stat Comput 23, 589–599 (2013). https://doi.org/10.1007/s11222-012-9332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-012-9332-x

Keywords

Navigation