Skip to main content
Log in

Fast and robust estimators of variance components in the nested error model

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Usual fitting methods for the nested error linear regression model are known to be very sensitive to the effect of even a single outlier. Robust approaches for the unbalanced nested error model with proved robustness and efficiency properties, such as M-estimators, are typically obtained through iterative algorithms. These algorithms are often computationally intensive and require robust estimates of the same parameters to start the algorithms, but so far no robust starting values have been proposed for this model. This paper proposes computationally fast robust estimators for the variance components under an unbalanced nested error model, based on a simple robustification of the fitting-of-constants method or Henderson method III. These estimators can be used as starting values for other iterative methods. Our simulations show that they are highly robust to various types of contamination of different magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Chambers, R., Tzavidis, N.: M-quantile models for small area estimation. Biometrika. 93, 255–268 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Copt, S., Heritier, S.: Robust alternatives to the \(F\)-test in mixed linear models based on \(MM\)-estimates. Biometrics. 63, 1045–1052 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Copt, S., Victoria-Feser, M.P.: High-breakdown inference for mixed linear models. J. Am. Statist. Assoc. 101, 292–300 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Gervini, D., Yohai, V.J.: Robust estimation of variance components. Can. J. Stat. 26, 419–430 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics. The Approach Based on Influence Functions. Wiley, New York (1986)

    MATH  Google Scholar 

  • Henderson, C.R.: Estimation of variance and covariance components. Biometrics 9, 226–252 (1953)

    Article  MathSciNet  Google Scholar 

  • Henderson, C.R.: Best linear unbiased estimation and prediction under a selection model. Biometrics. 31, 423–447 (1975)

    Article  MATH  Google Scholar 

  • Hocking, R.R.: A new approach to variance component estimation with diagnostic implications. Commun. Stat.- Theor.M. 19, 4591–4617 (1990)

    Article  MathSciNet  Google Scholar 

  • Hocking, R.R., Green, J.W., Bremer, R.H.: Variance component estimation with model-based diagnostics. Technometrics. 31, 227–239 (1989)

    Article  Google Scholar 

  • Huber, P.J.: Robust statistics. Wiley, Hoboken (1981)

    Book  MATH  Google Scholar 

  • Huggins, R.M.: A robust approach to the analysis of repeated measures. Biometrics 49, 715–720 (1993)

    Article  MathSciNet  Google Scholar 

  • Huggins, R.M., Staudte, R.G.: Cell lineage analysis: variance component models for dependent cell populations. J. Am. Statist. Assoc. 89, 19–29 (1994)

    MATH  Google Scholar 

  • Maronna, R.A., Yohai, V.J.: Robust regression with both continuous and categorical predictors. J. Stat. Plan. Infer. 89, 197–214 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Mehrotra, D.V.: Non-iterative robust estimators of variance components in within-subject designs. Stat. Med. 16, 1465–1479 (1997)

    Article  Google Scholar 

  • Prasad, N.G.N., Rao, J.N.K.: The estimation of the mean squared error of small-area estimators. J. Am. Statist. Assoc. 85, 163–171 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Rao, J.N.K., Molina, I.: Small Area Estimation, 2nd edn. Wiley, Hoboken (2015)

    Book  MATH  Google Scholar 

  • Richardson, A.M.: Bounded influence estimation in the mixed linear model. J. Am. Statist. Assoc. 92, 154–161 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Richardson, A.M., Welsh, A.H.: Robust restricted maximum likelihood in mixed linear models. Biometrics. 51, 1429–1439 (1997)

    Article  MATH  Google Scholar 

  • Rocke, D.M.: Robust statistical analysis of interlaboratory studies. Biometrika. 70, 421–431 (1983)

    Article  MathSciNet  Google Scholar 

  • Rocke, D.M.: Robustness and balance in the mixed model. Biometrics. 47, 303–309 (1991)

    Article  Google Scholar 

  • Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-Barrera, M., Verbeke, T., Koller, M. and Maechler, M.: Robustbase: basic robust statistics. R package version 0.92-5. (2015). http://CRAN.R-project.org/package=robustbase

  • Sinha, S.K., Rao, J.N.K.: Robust small area estimation. Can. J. Stat. 37, 381–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Stahel, W.A., Welsh, A.: Approaches to robust estimation in the simplest variance components model. J. Stat. Plan. Infer. 57, 297–319 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Vangeneugden, T., Laenen, A., Geys, H., Renard, D., Molenberghs, G.: Applying linear mixed models to estimate reliability in clinical trial data with repeated measurements. Control. Clin. Trials. 25, 13–30 (2004)

    Article  Google Scholar 

  • Wang, J., Zamar, R., Marazzi, A., Yohai, V., Salibian-Barrera, M., Maronna, R., Zivot, E., Rocke, D., Martin, D., Maechler, M., and Konis, K.: Robust, a package of robust methods, R package version 0.4-16, (2013). http://CRAN.R-project.org/package=robust

  • Wellenius, G.A., Yeh, G.Y., Coull, B.A., Suh, H.H., Phillips, R.S., Mittlemann, M.A.: Effects of ambient air pollution on functional status in patients with chronic congestive heart failure: repeated-measures study. Environ. Health-Glob. 6, 1–7 (2007)

  • Wellmann, J.: Robuste Statistische Verfahren un Ausreisseridentifikation beim Modell del Einfachklassification mit zufälligen Effekten. Ph.D. Thesis, Department of Statistics, University of Dortmund (1994)

  • Wellmann, J.: Robustness of an S-estimator in the one-way random effects model. Biometrical J. 42, 215–221 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Wellmann, J., Gather, U.: Identification of outliers in one-way random effects model. Stat. Pap. 44, 335–348 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Welsh, A.H., Richardson, A.M.: Approaches to the robust estimation of mixed models. In: Maddala, G.S., Rao, C.R. (eds.) Handbook of Statistics, pp. 343–384. Elsevier Science, Amsterdam (1997)

    Google Scholar 

  • Yohai, V., Stahel, W.A., Zamar, R.H.: A procedure for robust estimation and inference in linear regression. In: Stahel, W.A., Weisberg, S.W. (eds.) Directions in Robust Statistics and Diagnostics. Springer, Berlin (1991)

    Google Scholar 

Download references

Acknowledgments

Supported by the Spanish grants MTM2015-69638-R, MTM2012-37077-C02-01 and SEJ2007-64500, and by the European project num. 217565-FP7-SSH-2007-1

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Molina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 269 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, B., Molina, I., Thieler, A. et al. Fast and robust estimators of variance components in the nested error model. Stat Comput 27, 1655–1675 (2017). https://doi.org/10.1007/s11222-016-9710-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-016-9710-x

Keywords

Navigation