Skip to main content
Log in

Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part I: Model-Based and Axiomatic Approaches

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

For classical sets one has with the cumulative hierarchy of sets, with axiomatizations like the system ZF, and with the category SET of all sets and mappings standard approaches toward global universes of all sets.

We discuss here the corresponding situation for fuzzy set theory.Our emphasis will be on various approaches toward (more or less naively formed)universes of fuzzy sets as well as on axiomatizations, and on categories of fuzzy sets.

What we give is a (critical)survey of quite a lot of such approaches which have been offered in the last approximately 35 years.

The present Part I is devoted to model based and to axiomatic approaches; the forth-coming Part II will be devoted to category theoretic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATANASSOV, K., Intuitionistic Fuzzy Sets, Physica-Verlag, Heidelberg, 1999.

    Google Scholar 

  2. BAAZ, M., ‘Infinite-valued Gödel logics with 0-1-projections and relativizations’, in P. Hájek, (ed.), Gödel’96, Lect. Notes Logic 6, Springer, Berlin, 1996, pp. 23–33.

  3. BĚHOUNEK, L., AND P. CINTULA, ‘Fuzzy class theory’, Fuzzy Sets Syst., 154:34–55, 2005.

    Google Scholar 

  4. BELL, J. L., Boolean-valued models and independence proofs in set theory. Oxford Logic Guides 12. Oxford University Press (Clarendon Press), Oxford, 2nd edition, 1985.

    Google Scholar 

  5. BLIZARD, W. D., Real-valued multisets and fuzzy sets, Fuzzy Sets Syst., 33:77–97, 1989.

    Article  Google Scholar 

  6. BOTTA, O., AND M. DELORME, An f-sets universe \({\tilde V}\), in M. M. Gupta and E. Sanchez, (eds.), Fuzzy Information and Decision Processes, North-Holland, Amsterdam, 1982, pp. 133–141.

    Google Scholar 

  7. BROWN, J. G., ‘A note on fuzzy sets’, Information and Control, 18:32–39, 1971.

    Article  Google Scholar 

  8. CHAPIN, Jr, E. W., ‘Set-valued set theory. I’, Notre Dame J. Formal Logic, 15:619–634, 1974.

    Article  Google Scholar 

  9. CHAPIN, Jr, E. W., ‘Set-valued set theory. II’, Notre Dame J. Formal Logic, 16:255–267, 1975.

    Article  Google Scholar 

  10. CINTULA, P., AND P. HÁJEK, ‘Triangular norm based predicate fuzzy logics’, in Proc. Linz Seminar Fuzzy Set Theory 2005. (to appear).

  11. DEMIRCI, M., AND D. ÇOKER, ‘On the axiomatic theory of fuzzy sets’, Fuzzy Sets Syst., 60:181–198, 1993.

    Article  Google Scholar 

  12. DUBOIS D., et al., ‘Terminological dificulties in fuzzy set theory— The case of “Intuitionistic Fuzzy Sets”’, Fuzzy Sets Syst., 156:485–491, 2005.

    Google Scholar 

  13. GOTTWALD, S., ‘A cumulative system of fuzzy sets’, in A. Zarach, (ed.), ‘Set Theory Hierarchy Theory’, Mem. Tribute A. Mostowski, Bierutowice 1975, Lect. Notes Math. 537:109–119, Springer, Berlin, 1976.

  14. GOTTWALD, S., ‘Untersuchungen zur mehrwertigen Mengenlehre. I, Math. Nachr., 72:297–303, 1976.

    Google Scholar 

  15. GOTTWALD, S., ‘Set theory for fuzzy sets of higher level’, Fuzzy Sets Syst., 2:125–151, 1979.

    Article  Google Scholar 

  16. GOTTWALD, S., ‘Fuzzy uniqueness of fuzzy mappings’, Fuzzy Sets Syst., 3:49–74, 1980.

    Google Scholar 

  17. GOTTWALD, S., ‘A generalized Lukasiewicz-style identity logic’, in L. P. de Alcantara, (ed.), Mathematical Logic and Formal Systems, Lecture Notes Pure Appl. Math. 94:183–195, Marcel Dekker, New York, 1985. Coll. Pap. Hon. N. C. A. da Costa.

  18. GOTTWALD, S., Fuzzy sets and fuzzy logic. The foundations of application – from a mathematical point of view. Artificial Intelligence. Vieweg, Braunschweig/Wiesbaden, 1993.

  19. GOTTWALD, S., A treatise on many-valued logics. Studies in Logic and Computation. 9. Research Studies Press, Baldock, 2001.

    Google Scholar 

  20. GOTTWALD, S., and P. Hájek, ‘T-norm based mathematical fuzzy logics’, in E. P. Klement and R. Mesiar, (eds), Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, Elsevier, Dordrecht, 2005, pp. 275–299.

    Google Scholar 

  21. HÁJEK, P., Metamathematics of Fuzzy Logic. Trends in Logic. 4. Kluwer Acad. Publ., Dordrecht, 1998.

  22. HÁJEK, P., ‘On arithmetic in the Cantor-Lukasiewicz fuzzy set theory’, Arch. Math. Logic, 44:763–782, 2005.

    Google Scholar 

  23. HÁJEK, P., AND Z. HANIKOVÁ, ‘A set theory within fuzzy logic’, in 31st IEEE Internat. Symp. Multiple-Valued Logic, Warsaw, 2001, pp. 319–323. IEEE Computer Soc., Los Alamitos/Ca, 2001.

  24. HÁJEK, P., AND Z. HANIKOVÁ, ‘A development of set theory in fuzzy logic’, in M. Fitting and E. Orlowska, (eds), Beyond Two, Studies in Soft Computing. Physica-Verlag, Heidelberg 2003, pp. 273–285.

    Google Scholar 

  25. JAHN, K. U., Über einen Ansatz zur mehrwertigen Mengenlehre unter Zulassung kontinuumvieler Wahrheitswerte. Master's thesis, Universität Leipzig, 1969.

  26. KLAUA, D., ‘Über einen Ansatz zur mehrwertigen Mengenlehre’, Monatsber. Deutsch. Akad. Wiss. Berlin, 7:859–867, 1965.

    Google Scholar 

  27. KLAUA, D., ‘Grundbegrifie einer mehrwertigen Mengenlehre’, Monatsber. Deutsch. Akad. Wiss. Berlin, 8:782–802, 1966.

    Google Scholar 

  28. KLAUA, D., ‘Über einen zweiten Ansatz zur mehrwertigen Mengenlehre’, Monatsber. Deutsch. Akad. Wiss. Berlin, 8:161–177, 1966.

    Google Scholar 

  29. KLAUA, D., ‘Ein Ansatz zur mehrwertigen Mengenlehre’, Math. Nachr., 33:273–296, 1967.

    Google Scholar 

  30. KLAUA, D., ‘Stetige Gleichmächtigkeiten kontinuierlich-wertiger Mengen’, Monatsber. Deutsch. Akad. Wiss. Berlin, 12:749–758, 1970.

    Google Scholar 

  31. KLAUA, D., ‘Zum Kardinalzahlbegrifiin der mehrwertigen Mengenlehre’, in G. Asser, J. Flachsmeyer, and W. Rinow, (eds), Theory of Sets and Topology. Deutscher Verlag Wissensch., Berlin, 1972, pp. 313–325. Collection Papers Honour Felix Hausdorfi.

  32. KLAUA, D., ‘Zur Arithmetik mehrwertiger Zahlen’, Math. Nachr., 57:275–306, 1973.

    Google Scholar 

  33. KLEENE, S. C., Introduction to Metamathematics, North-Holland Publ. Comp./van Nostrand, Amsterdam/New York, 1952.

    Google Scholar 

  34. LAKE, J., ‘Sets, fuzzy sets, multisets and functions’, J. London Math. Soc., II. Ser., 12:323–326, 1976.

    Google Scholar 

  35. LANO, K., Mathematical frameworks for vagueness and approximate reasoning. PhD thesis, Bristol University, 1988.

  36. LANO, K., ‘Formal frameworks for approximate reasoning’, Fuzzy Sets Syst., 51:131–146, 1992.

    Article  Google Scholar 

  37. LANO, K., ‘Fuzzy sets and residuated logic’, Fuzzy Sets Syst., 47:203–220, 1992.

    Article  Google Scholar 

  38. NOVÁK, V., ‘An attempt at Gödel-Bernays-like axiomatization of fuzzy sets’, Fuzzy Sets Syst., 3:323–325, 1980.

    Google Scholar 

  39. NovÁK, V., ‘Fuzzy type theory’, Fuzzy Sets Syst., 149:235–273, 2004.

    Google Scholar 

  40. PRATI, N., ‘An axiomatization of fuzzy classes’, Stochastica, 12:65–78, 1988.

    Google Scholar 

  41. PRATI, N., ‘About the axiomatizations of fuzzy set theory’, Fuzzy Sets Syst., 39:101–109, 1991.

    Article  Google Scholar 

  42. PRATI, N., ‘On the comparison between fuzzy set axiomatizations’, Fuzzy Sets Syst., 46:167–175, 1992.

    Article  Google Scholar 

  43. RASIOWA, H., An Algebraic Approach to Non-Classical Logics. North-Holland Publ. Comp./PWN, Amsterdam/Warsaw, 1974.

    Google Scholar 

  44. SCHWARTZ, D., ‘Mengenlehre über vorgegebenen algebraischen Systemen’, Math. Nachr., 53:365–370, 1972.

    Google Scholar 

  45. SKOLEM, T., ‘Bemerkungen zum Komprehensionsaxiom’, Zeitschr. math. Logik Grundl. Math., 3:1–17, 1957.

    Google Scholar 

  46. TAKEUTI, G., AND S. TITANI, ‘Intuitionistic fuzzy logic and intuitionistic fuzzy set theory’, J. Symb. Logic, 49:851–866, 1984.

    Google Scholar 

  47. TAKEUTI, G., AND S. TITANI, ‘Global intuitionistic fuzzy set theory’, in The Mathematics of Fuzzy Systems, Interdisciplinary Syst. Res. 88:291–301. TÜV Rheinland, Köln (Cologne), 1986.

  48. TAKEUTI, G., AND S. TITANI, ‘Fuzzy logic and fuzzy set theory’, Arch. Math. Logic, 32:1–32, 1992.

    Article  Google Scholar 

  49. TAMIR, D. E., Z.-Q. CAO, A. KANDEL, AND J. L. MOTT, ‘An axiomatic approach to fuzzy set theory’, Information Sci., 52:75–83, 1990.

    Article  Google Scholar 

  50. TITANI, S., ‘Completeness of global intuitionistic set theory’, J. Symb. Logic, 62:506–528, 1997.

    Google Scholar 

  51. TITANI, S., ‘Numbers in a lattice valued set theory’, RIMS Kokyuroku, 1010:174–192, 1997.

    Google Scholar 

  52. TITANI, S., ‘A lattice-valued set theory’, Arch. Math. Logic, 38:395–421, 1999.

    Article  Google Scholar 

  53. TOTH, H., ‘Axiomatic f-set theory. I: Basic concepts’, J. Fuzzy Math., 1:109–135, 1993.

    Google Scholar 

  54. WEIDNER, A. J., An axiomatization of fuzzy set theory, PhD thesis, Univ. Notre Dame, 1974.

  55. WEIDNER, A. J., ‘Fuzzy sets and Boolean-valued universes’, Fuzzy Sets Syst., 6:61–72, 1981.

    Article  Google Scholar 

  56. WHITE, R. B., ‘The consistency of the axiom of comprehension in the infinite-valued predicate logic of Lukasiewicz’, J. Philosophical Logic, 8:509–534, 1979.

    Google Scholar 

  57. YASUGI, M., ‘Definitive valuation of set theory’, Comment. Math. Univ. St. Pauli, 30:175–191, 1981.

    Google Scholar 

  58. YASUGI, M., ‘Continuous valuation and logic’, Nagoya Math. J., 85:175–188, 1982.

    Google Scholar 

  59. ZADEH, L. A., ‘Fuzzy sets’, Information and Control, 8:338–353, 1965.

    Article  Google Scholar 

  60. ZHANG, JIN WEN, ‘The normal fuzzy set structures and the Boolean-valued models’, J. Huazhong Inst. Tech. (English Ed.), 2(1):1–9, 1980.

    Google Scholar 

  61. ZHANG, JIN WEN, ‘A unified treatment of fuzzy set theory and Boolean-valued set theory–fuzzy set structures and normal fuzzy set structures’, J. Math. Anal. Appl., 76:297–301, 1980.

    Google Scholar 

  62. ZHANG, JIN WEN, ‘Between fuzzy set theory and Boolean valued set theory’, in M. M. Gupta and E. Sanchez, (eds), Fuzzy Information and Decision Processes, North-Holland, Amsterdam, 1982, pp. 143–147.

    Google Scholar 

  63. ZHANG, JIN WEN, ‘Fuzzy set structure with strong implication’, in P. P. Wang, (ed.), Advances in Fuzzy Sets, Possibility Theory, and Applications, Plenum Press, New York, 1983, pp. 107–136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Gottwald.

Additional information

This paper is a version of the invited talk given by the author at the conference Trends in Logic III, dedicated to the memory of A. MOSTOWSKI, H. RASIOWA and C. RAUSZER, and held in Warsaw and Ruciane-Nida from 23rd to 25th September 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottwald, S. Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part I: Model-Based and Axiomatic Approaches. Stud Logica 82, 211–244 (2006). https://doi.org/10.1007/s11225-006-7197-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-006-7197-8

Keywords

Navigation