Skip to main content
Log in

A Categorical Equivalence for Product Algebras

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

In this paper we provide a categorical equivalence for the category \({\mathcal{P}}\) of product algebras, with morphisms the homomorphisms. The equivalence is shown with respect to a category whose objects are triplets consisting of a Boolean algebra B, a cancellative hoop C and a map \({\vee_e}\) from B × C into C satisfying suitable properties. To every product algebra P, the equivalence associates the triplet consisting of the maximum boolean subalgebra B(P), the maximum cancellative subhoop C(P), of P, and the restriction of the join operation to B × C. Although several equivalences are known for special subcategories of \({\mathcal{P}}\), up to our knowledge, this is the first equivalence theorem which involves the whole category of product algebras. The syntactic counterpart of this equivalence is a syntactic reduction of classical logic CL and of cancellative hoop logic CHL to product logic, and viceversa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aglianó P., Montagna F.: Varieties of BL-algebras I: general properties. Journal of Pure and Applied Algebra 181, 105–129 (2003)

    Article  Google Scholar 

  2. Aglianó P., Ferreirim I.M.A., Montagna F.: Basic hoops: an algebriac study of continuous t-norms. Studia Logica 87(1), 73–98 (2007)

    Article  Google Scholar 

  3. Bigard, A., K. Keimel, and S. Wolfenstein, Groupes at anneaux reticulés, vol. 608 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1977.

  4. Blok W.J., Ferreirim I.M.A.: On the structure of hoops. Algebra Universalis 43, 233–257 (2000)

    Article  Google Scholar 

  5. Blok, W., and D. Pigozzi, Algebraizable Logics, vol. 77 of Memoirs of the American Mathematical Society, American Mathematical Society, Providence, 1989, p. 396.

  6. Burris, S., and H. P. Sankappanavar, A course in Universal Algebra, Graduate texts in Mathematics, Springer-Verlag, Berlin, 1981.

  7. Busanice, M., and F. Montagna, Hájek’s Logic BL and BL-algebras, in P. Cintula, P. Hájek and C. Noguera, (eds.), Handbook of Mathematical Fuzzy Logic, Studies in Logic, vol. 38 of Mathematical Logic and Foundations, College Publications, London, 2011, pp. 355–447.

  8. Cignoli, R., I. M. L. D’Ottaviano, and D. Mundici, Algebraic foundations of many-valued reasoning, Kluwer, 2000.

  9. Cignoli R., Torrens A.: An algebraic analysis of product logic. Multiple-Valued Logic 5, 45–65 (2000)

    Google Scholar 

  10. Di Nola A., Lettieri A.: Perfect MV-algebras are categorical equivalent to abelian -groups. Studia Logica 53, 417–432 (1994)

    Article  Google Scholar 

  11. Dummett M.: A propositional logic with denumerable matrix. The Journal of Symbolic Logic 24, 96–107 (1959)

    Article  Google Scholar 

  12. Esteva F., Godo L., Hájek P.: A complete many-valued logic with product conjunction. Archive for Mathematical Logic 35, 191–208 (1996)

    Article  Google Scholar 

  13. Esteva F., Godo L., Hájek P., Montagna F.: Hoops and fuzzy logic. Journal of Logic and Computation 13(4), 531–555 (2003)

    Article  Google Scholar 

  14. Ferreirim, I. M. A., On varieties and quasi varieties of hoops and their reducts, PhD thesis, University of Illinois at Chicago, 1992.

  15. Galatos, N., P. Jipsen, T. Kowalski and H. Ono, Residuated lattices: An algebraic glimpse at substructural logics, vol. 151 of Studies in Logic and the Foundations of Mathematics, Elsevier, 2007.

  16. Galatos N., Tsinakis C.: Generalized MV-algebras. Journal of Algebra 283(1), 254–291 (2005)

    Article  Google Scholar 

  17. Hà àjek, P., Metamathematics of fuzzy logic, Kluwer, 1998.

  18. Mac Lane, S., Categories for the Working Mathematician, second edition, Graduate Texts in Mathematics, Springer, 1997.

  19. Montagna F., Tsinakis C.: Ordered groups with a conucleus. Journal of Pure and Applied Algebra 214(1), 71–88 (2010)

    Article  Google Scholar 

  20. Mundici D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. Journal of Functional Analysis 65, 15–63 (1986)

    Article  Google Scholar 

  21. Schmidt, J., Quasi-decompositions, exact sequences, and triple sums of semigroups I–II, vol.17 of Colloquia Mathematica Societatis János Bolyai, Contributions to Universal Algebra, Szeged, 1975.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Montagna.

Additional information

Presented by Daniele Mundici

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montagna, F., Ugolini, S. A Categorical Equivalence for Product Algebras. Stud Logica 103, 345–373 (2015). https://doi.org/10.1007/s11225-014-9569-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-014-9569-9

Keywords

Mathematics Subject Classification

Navigation