Abstract
In this paper, we present an efficient parallel algorithm to solve Toeplitz–block and block–Toeplitz systems in distributed memory multicomputers. This algorithm parallelizes the Generalized Schur Algorithm to obtain the semi-normal equations. Our parallel implementation reduces the communication cost and optimizes the memory access. The experimental analysis on a cluster of personal computers shows the scalability of the implementation. The algorithm is portable because it is based on standard tools and libraries, such as ScaLAPACK and MPI.
Similar content being viewed by others
References
V. M. Adukov. Generalized inversion of block Toeplitz matrices. Linear Algebra and its Applications 274(1–3):85–124, 1998.
E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide, 2nd ed. Philadelphia, SIAM, 1995.
C. Bischof and C. Van Loan. The WY representation for products of Householder matrices. SIAM Journal on Scientific and Statistical Computing, 8(1):S2–S13, 1987. Parallel processing for scientific computing (Norfolk, Va., 1985).
L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley, ScaLAPACK Users’ Guide, Philadelphia, SIAM, 1997.
N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, and W. Su. Myrinet. A Gigabit-per-Second Local-Area Network. IEEE Micro, 15:29–36, 1995.
A. Bojanczyk, R. P. Brent, and F. de Hoog, A weakly stable algorithm for general toeplitz systems. Technical Report TR-CS-93-15, Laboratory for Computer Science, Australian National University, Canberra, Australia. Revised June 1994.
A. W. Bojanczyk, R. P. Brent, and F. R. de Hoog. Stability analysis of a general Toeplitz systems solver. Numerical Algorithms, 10(3/4):225–244, 1995.
A. W. Bojanczyk, R. P. Brent, F. R. de Hoog, and D. R. Sweet. On the stability of the Bareiss and related Toeplitz factorization algorithms. SIAM Journal on Matrix Analysis and Applications, 16(1):40–57, 1995.
J. R. Bunch. The Weak and strong stability of algorithms in numerical linear algebra. Linear Algebra and its Applications, 88/89:49–66, 1987.
S. Cabay, A. R. Jones, and G. Labahn, Computation of numerical Padé-Hermite and simultaneous Padé systems. I. Near inversion of generalized Sylvester matrices. SIAM Journal on Matrix Analysis and Applications, 17(2):248–267, 1996.
S. Cabay, A. R. Jones, and G. Labahn. Computation of numerical Padé-Hermite and simultaneous Padé systems. II. A weakly stable algorithm. SIAM Journal on Matrix Analysis and Applications, 17(2):268–297, 1996.
S. Cabay, A. R. Jones, and G. Labahn, Algorithm 766: Experiments with a weakly stable algorithm for computing padé and simultaneous padé approximants. ACM Transactions on Mathematical Software, 23(1):91–110, 1997.
S. Chandrasekaran and A. H. Sayed. A fast stable solver for nonsymmetric toeplitz and quasi-toeplitz systems of linear equations. SIAM Journal on Matrix Analysis and Applications, 19(1):107–139, 1998.
E. de Doncker and J. Kapenga. Parallelization of Toeplitz solvers. In G. H. Golub and P. V. Dooren, eds. Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, No. 70 in Computer and systems sciencies. Springer-Verlag, pp. 467–476, 1990.
D. J. Evans and G. Oka. Parallel solution of symmetric positive definite Toeplitz systems. Parallel Algorithms and Applications, 12(9):297–303, 1998.
K. Gallivan, S. Thirumalai, and P. V. Dooren. On solving block toeplitz systems using a block schur algorithm. In J. Chandra, ed. Proceedings of the 23rd International Conference on Parallel Processing. Volume 3: Algorithms and Applications. Boca Raton, FL, USA, pp. 274–281, 1994.
K. A. Gallivan, S. Thirumalai, P. V. Dooren, and V. Vermaut. High performance algorithms for Toeplitz and block toeplitz matrices. Linear Algebra and its Applications, 241/243(1–3):343–388, 1996. In Proceedings of the Fourth Conference of the International Linear Algebra Society (Rotterdam, 1994).
L. Gemignani. Schur complements of bezoutians and the inversion of block hankel and block toeplitz matrices. Linear Algebra and its Applications, 253(1–3):39–59, 1997.
I. Gohberg, I. Koltracht, A. Averbuch, and B. Shoham. Timing analysis of a parallel algorithm for Toeplitz matrices on a MIMD parallel machine. Parallel Computing, 17(4/5):563–577, 1991.
G. H. Golub and C. F. V. Loan. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore, MD, USA, 1996.
T. Kailath and J. Chun. Generalized displacement structure for block-toeplitz, toeplitz-block, and toeplitz-derived matrices. SIAM Journal on Matrix Analysis and Applications, 15(1):114–128.
T. Kailath and A. H. Sayed. Displacement structure: Theory and applications. SIAM Review, 37(3):297–386, 1995.
P. Kravanja and M. V. Barel. A fast block Hankel solver based on an inversion formula for block Loewner matrices. Calcolo, 33:147–164, 1996.
S. Y. Kung and Y. H. Hu. A highly concurrent algorithm and pipelined architecture for solving toeplitz systems. IEEE Trans. Acoustics, Speech and Signal Processing, ASSP-31(1):66, 1983.
S. Y. Kung, H. J. Whitehouse, and T. Kailath (eds.). VLSI and Modem Signal Processing (Los Angeles, CA, November 1–3, 1982). Prentice-Hall, Englewood Cliffs, NJ, 1985.
G. Labahn, D. K. Choi, and S. Cabay. The inverses of block hankel and block toeplitz matrices. SIAM Journal on Computing, 19(1):98–123, 1990.
V. Y. Pan. Concurrent iterative algorithm for Toeplitz-like linear systems. IEEE Transactions on Parallel and Distributed Systems, 4(5):592–600, 1993.
R. Schreiber and C. Van Loan. A storage-efficient WY representation for products of Householder transformations. SIAM Journal on Scientific and Statistical Computing, 10(1):53–57, 1989.
M. Stewart and P. Van Dooren, Stability issues in the factorization of structured matrices. SIAM Journal on Matrix Analysis and Applications, 18(1):104–118, 1997.
D. R. Sweet. Fast Toeplitz orthogonalization. Numerische Mathematik, 43(1):1–21, 1984.
D. R. Sweet. The Use of Linear-time Systolic Algorithms for the solution of Toeplitz Problems. Technical Report JCU-CS-91/1, Department of Computer Science, James Cook University. Tue, 15:17:55 GMT, 1991.
S. Thirumalai. High performance algorithms to solve Toeplitz and block Toeplitz systems. Ph.D. thesis, Graduate College of the University of Illinois at Urbana-Champaign, 1996.
M. Van Barel and A. Bultheel. A lookahead algorithm for the solution of block Toeplitz systems. Linear Algebra and its Applications, 266(1–3):291–335, 1997.
M. Wax and T. Kailath. Efficient inversion of toeplitz-block toeplitz matrix. IEEE Trans. Acoustics, Speech and Signal Processing, ASSP-31(5):1218, 1983.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Alonso, P., Badía, J.M. & Vidal, A.M. An Efficient Parallel Algorithm to Solve Block–Toeplitz Systems. J Supercomput 32, 251–278 (2005). https://doi.org/10.1007/s11227-005-0182-6
Issue Date:
DOI: https://doi.org/10.1007/s11227-005-0182-6