Skip to main content

Advertisement

Log in

An Efficient Parallel Algorithm to Solve Block–Toeplitz Systems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this paper, we present an efficient parallel algorithm to solve Toeplitz–block and block–Toeplitz systems in distributed memory multicomputers. This algorithm parallelizes the Generalized Schur Algorithm to obtain the semi-normal equations. Our parallel implementation reduces the communication cost and optimizes the memory access. The experimental analysis on a cluster of personal computers shows the scalability of the implementation. The algorithm is portable because it is based on standard tools and libraries, such as ScaLAPACK and MPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Adukov. Generalized inversion of block Toeplitz matrices. Linear Algebra and its Applications 274(1–3):85–124, 1998.

    Google Scholar 

  2. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide, 2nd ed. Philadelphia, SIAM, 1995.

    Google Scholar 

  3. C. Bischof and C. Van Loan. The WY representation for products of Householder matrices. SIAM Journal on Scientific and Statistical Computing, 8(1):S2–S13, 1987. Parallel processing for scientific computing (Norfolk, Va., 1985).

    Google Scholar 

  4. L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley, ScaLAPACK Users’ Guide, Philadelphia, SIAM, 1997.

    Google Scholar 

  5. N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, and W. Su. Myrinet. A Gigabit-per-Second Local-Area Network. IEEE Micro, 15:29–36, 1995.

    Google Scholar 

  6. A. Bojanczyk, R. P. Brent, and F. de Hoog, A weakly stable algorithm for general toeplitz systems. Technical Report TR-CS-93-15, Laboratory for Computer Science, Australian National University, Canberra, Australia. Revised June 1994.

  7. A. W. Bojanczyk, R. P. Brent, and F. R. de Hoog. Stability analysis of a general Toeplitz systems solver. Numerical Algorithms, 10(3/4):225–244, 1995.

    Google Scholar 

  8. A. W. Bojanczyk, R. P. Brent, F. R. de Hoog, and D. R. Sweet. On the stability of the Bareiss and related Toeplitz factorization algorithms. SIAM Journal on Matrix Analysis and Applications, 16(1):40–57, 1995.

    Google Scholar 

  9. J. R. Bunch. The Weak and strong stability of algorithms in numerical linear algebra. Linear Algebra and its Applications, 88/89:49–66, 1987.

    Google Scholar 

  10. S. Cabay, A. R. Jones, and G. Labahn, Computation of numerical Padé-Hermite and simultaneous Padé systems. I. Near inversion of generalized Sylvester matrices. SIAM Journal on Matrix Analysis and Applications, 17(2):248–267, 1996.

    Google Scholar 

  11. S. Cabay, A. R. Jones, and G. Labahn. Computation of numerical Padé-Hermite and simultaneous Padé systems. II. A weakly stable algorithm. SIAM Journal on Matrix Analysis and Applications, 17(2):268–297, 1996.

    Google Scholar 

  12. S. Cabay, A. R. Jones, and G. Labahn, Algorithm 766: Experiments with a weakly stable algorithm for computing padé and simultaneous padé approximants. ACM Transactions on Mathematical Software, 23(1):91–110, 1997.

    Google Scholar 

  13. S. Chandrasekaran and A. H. Sayed. A fast stable solver for nonsymmetric toeplitz and quasi-toeplitz systems of linear equations. SIAM Journal on Matrix Analysis and Applications, 19(1):107–139, 1998.

    Google Scholar 

  14. E. de Doncker and J. Kapenga. Parallelization of Toeplitz solvers. In G. H. Golub and P. V. Dooren, eds. Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, No. 70 in Computer and systems sciencies. Springer-Verlag, pp. 467–476, 1990.

  15. D. J. Evans and G. Oka. Parallel solution of symmetric positive definite Toeplitz systems. Parallel Algorithms and Applications, 12(9):297–303, 1998.

    Google Scholar 

  16. K. Gallivan, S. Thirumalai, and P. V. Dooren. On solving block toeplitz systems using a block schur algorithm. In J. Chandra, ed. Proceedings of the 23rd International Conference on Parallel Processing. Volume 3: Algorithms and Applications. Boca Raton, FL, USA, pp. 274–281, 1994.

  17. K. A. Gallivan, S. Thirumalai, P. V. Dooren, and V. Vermaut. High performance algorithms for Toeplitz and block toeplitz matrices. Linear Algebra and its Applications, 241/243(1–3):343–388, 1996. In Proceedings of the Fourth Conference of the International Linear Algebra Society (Rotterdam, 1994).

    Google Scholar 

  18. L. Gemignani. Schur complements of bezoutians and the inversion of block hankel and block toeplitz matrices. Linear Algebra and its Applications, 253(1–3):39–59, 1997.

    Google Scholar 

  19. I. Gohberg, I. Koltracht, A. Averbuch, and B. Shoham. Timing analysis of a parallel algorithm for Toeplitz matrices on a MIMD parallel machine. Parallel Computing, 17(4/5):563–577, 1991.

    Google Scholar 

  20. G. H. Golub and C. F. V. Loan. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore, MD, USA, 1996.

    Google Scholar 

  21. T. Kailath and J. Chun. Generalized displacement structure for block-toeplitz, toeplitz-block, and toeplitz-derived matrices. SIAM Journal on Matrix Analysis and Applications, 15(1):114–128.

  22. T. Kailath and A. H. Sayed. Displacement structure: Theory and applications. SIAM Review, 37(3):297–386, 1995.

    Google Scholar 

  23. P. Kravanja and M. V. Barel. A fast block Hankel solver based on an inversion formula for block Loewner matrices. Calcolo, 33:147–164, 1996.

    Google Scholar 

  24. S. Y. Kung and Y. H. Hu. A highly concurrent algorithm and pipelined architecture for solving toeplitz systems. IEEE Trans. Acoustics, Speech and Signal Processing, ASSP-31(1):66, 1983.

    Google Scholar 

  25. S. Y. Kung, H. J. Whitehouse, and T. Kailath (eds.). VLSI and Modem Signal Processing (Los Angeles, CA, November 1–3, 1982). Prentice-Hall, Englewood Cliffs, NJ, 1985.

    Google Scholar 

  26. G. Labahn, D. K. Choi, and S. Cabay. The inverses of block hankel and block toeplitz matrices. SIAM Journal on Computing, 19(1):98–123, 1990.

    Google Scholar 

  27. V. Y. Pan. Concurrent iterative algorithm for Toeplitz-like linear systems. IEEE Transactions on Parallel and Distributed Systems, 4(5):592–600, 1993.

    Google Scholar 

  28. R. Schreiber and C. Van Loan. A storage-efficient WY representation for products of Householder transformations. SIAM Journal on Scientific and Statistical Computing, 10(1):53–57, 1989.

    Google Scholar 

  29. M. Stewart and P. Van Dooren, Stability issues in the factorization of structured matrices. SIAM Journal on Matrix Analysis and Applications, 18(1):104–118, 1997.

    Google Scholar 

  30. D. R. Sweet. Fast Toeplitz orthogonalization. Numerische Mathematik, 43(1):1–21, 1984.

    Google Scholar 

  31. D. R. Sweet. The Use of Linear-time Systolic Algorithms for the solution of Toeplitz Problems. Technical Report JCU-CS-91/1, Department of Computer Science, James Cook University. Tue, 15:17:55 GMT, 1991.

  32. S. Thirumalai. High performance algorithms to solve Toeplitz and block Toeplitz systems. Ph.D. thesis, Graduate College of the University of Illinois at Urbana-Champaign, 1996.

  33. M. Van Barel and A. Bultheel. A lookahead algorithm for the solution of block Toeplitz systems. Linear Algebra and its Applications, 266(1–3):291–335, 1997.

    Google Scholar 

  34. M. Wax and T. Kailath. Efficient inversion of toeplitz-block toeplitz matrix. IEEE Trans. Acoustics, Speech and Signal Processing, ASSP-31(5):1218, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, P., Badía, J.M. & Vidal, A.M. An Efficient Parallel Algorithm to Solve Block–Toeplitz Systems. J Supercomput 32, 251–278 (2005). https://doi.org/10.1007/s11227-005-0182-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-005-0182-6

Keywords