Skip to main content
Log in

A robust motion estimation with center-biased diamond search and its parallel architecture for motion-compensated de-interlace

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

For motion compensated de-interlace, the accuracy and reliability of the motion vectors have a significant impact on the performance of the motion compensated interpolation. In order to improve the robustness of motion vector, a novel motion estimation algorithm with center-biased diamond search and its parallel VLSI architecture are proposed in this paper. Experiments show that it works better than conventional motion estimation algorithms in terms of motion compensation error and robustness, and its architecture overcomes the irregular data flow and achieves high efficiency. It also efficiently reuses data and reduces the control overhead. So, it is highly suitable for HDTV applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu LJ, Li JT, Zhang YD, Shen YF (2006) Motion adaptive deinterlacing with accurate motion detection and anti-aliasing interpolation filter. IEEE Trans Consum Electron 52(2):712–717. doi:10.1109/TCE.2006.1649702

    Article  Google Scholar 

  2. Brox P, Baturone I, Sánchez-Solan S (2009) Fuzzy motion-adaptive interpolation with picture repetition detection for deinterlacing. IEEE Trans Instrum Meas 58(9):2952–2958. doi:10.1109/TIM.2009.2016791

    Article  Google Scholar 

  3. Fan YC, Chung CH (2009) De-interlacing algorithm using spatial-temporal correlation-assisted motion estimation. IEEE Trans Circuits Syst Video Technol 19(7):932–944. doi:10.1109/TCSVT.2009.2020327

    Article  Google Scholar 

  4. Chen YR, Tai SC (2009) True motion-compensated de-interlacing algorithm. IEEE Trans Circuits Syst Video Technol 19(10):1489–1498. doi:10.1109/TCSVT.2009.2022782

    Article  Google Scholar 

  5. Wang D, Vincent A, Blanchfield P (2005) Hybrid de-interlacing algorithm based on motion vector reliability. IEEE Trans Circuits Syst Video Technol 15(8):1019–1025. doi:10.1109/TCSVT.2005.852414

    Article  Google Scholar 

  6. Chen YK, Vetro A, Sun H, Kung SY (1998) Frame-rate up-conversion using transmitted true motion vectors. In: IEEE 2nd workshop on multimedia signal process, December 7–9, 1998, pp 622–627. doi:10.1109/MMSP.1998.739050

    Google Scholar 

  7. Lai YK (2001) A memory efficient motion estimator for three step search block-matching algorithm. IEEE Trans Consum Electron 47(3):644–651. doi:10.1109/30.964158

    Article  Google Scholar 

  8. Soongsathitanon S, Woo WL, Dlay SS (2005) Fast search algorithms for video coding using orthogonal logarithmic search algorithm. IEEE Trans Consum Electron 51(2):552–559. doi:10.1109/TCE.2005.1468001

    Article  Google Scholar 

  9. Huang ST, Ahmadi M, Miller WC (2003) A novel hierarchical search motion estimation algorithm. In: IEEE int symp micro-nanomechatronics and human science, December 27–30, 2003, vol 2, pp 564–567. doi:10.1109/MWSCAS.2003.1562349

    Google Scholar 

  10. Banh XQ, Tan YP (2004) Adaptive dual-cross search algorithm for block-matching motion estimation. IEEE Trans Consum Electron 50(2):766–775. doi:10.1109/TCE.2004.1309460

    Article  Google Scholar 

  11. So H, Kim J, Cho WK, Kim YS (2005) Fast motion estimation using modified diamond search patterns. Electron Lett 41(2):62–63. doi:10.1049/el:20056342

    Article  Google Scholar 

  12. Chen OT-C (2000) Motion estimation using a one-dimensional gradient descent search. IEEE Trans Circuits Syst Video Technol 10(4):608–616. doi:10.1109/76.845006

    Article  Google Scholar 

  13. Tham JY, Ranganath S, Ranganath M, Kassim AA (1998) A novel unrestricted center-biased diamond search algorithm for block motion estimation. IEEE Trans Circuits Syst Video Technol 8(4):369–377. doi:10.1109/76.709403

    Article  Google Scholar 

  14. Luo L, Zou C, Gao X, He Z (1997) A new prediction search algorithm for block motion estimation in video coding. IEEE Trans Consum Electron 43(1):56–61. doi:10.1109/30.580385

    Article  Google Scholar 

  15. Xu JB, Po LM, Cheung CK (1997) A new prediction model search algorithm for fast block motion estimation. In: Int conf image process, October 26–29, 1997, vol 3, pp 610–613. doi:10.1109/ICIP.1997.632195

    Google Scholar 

  16. Ismaeil I, Docef A, Kossentini F, Ward R (1999) Efficient motion estimation using spatial and temporal motion vector prediction. In: Int conf on image process, October 24–28, 1999, vol 1, pp 70–74. doi:10.1109/ICIP.1999.821568

    Google Scholar 

  17. Choi BT, Lee SH, Ko SJ (2000) New frame rate up-conversion using bi-directional motion estimation. IEEE Trans Consum Electron 46(3):603–609. doi:10.1109/30.883418

    Article  Google Scholar 

  18. Kuhn P (1999) Algorithms, complexity analysis and VLSI architectures for MPEG-4 motion estimation. Kluwer Academic, Norwell, pp 118–211

    MATH  Google Scholar 

  19. Rahman CA, Badawy W (2005) A quarter pel full search block motion estimation architecture for H.264/AVC. In: IEEE int conf multimedia and expo, July 6–8, 2005, pp 414–417. doi:10.1109/ICME.2005.1521448

    Chapter  Google Scholar 

  20. Miranda M, Kaspar M, Catthoor F, de Man H (1997) Architectural exploitation and optimization for counter based hardware address generation. In: European conf design and test, March 17–10, 1997, pp 293–298. doi:10.1109/EDTC.1997.582373

    Google Scholar 

  21. Lee SG, Lee DH (2003) A motion-adaptive de-interlacing method using an efficient spatial and temporal interpolation. IEEE Trans Consum Electron 49(4):1266–1271. doi:10.1109/TCE.2003.1261228

    Article  Google Scholar 

  22. Jong HM, Chen LG, Chiueh TD (1994) Parallel architectures for 3-step hierarchical search block-matching algorithm. IEEE Trans Circuits Syst Video Technol 4(4):407–416. doi:10.1109/76.313135

    Article  Google Scholar 

  23. Vos LD, Stegherr M (1989) Parameterizable VLSI architectures for the full-search block-matching algorithm. IEEE Trans Circuits Syst 36(10):1309–1316. doi:10.1109/31.44347

    Article  Google Scholar 

  24. Lee CY, Lu MC (1997) An efficient VLSI architecture for Full-search block matching algorithms. J VLSI Signal Process 15(3):275–282. doi:10.1023/A:1007915312120

    Article  Google Scholar 

  25. He WF, Zhao ML, Tsui CY, Mao ZG (2007) A scalable frame-level pipelined architecture for FSBM motion estimation. In: 20th int conf VLSI design, January 6–10, 2007, pp 830–835. doi:10.1109/VLSID.2007.26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Yan, X. A robust motion estimation with center-biased diamond search and its parallel architecture for motion-compensated de-interlace. J Supercomput 58, 68–83 (2011). https://doi.org/10.1007/s11227-010-0527-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-010-0527-7

Keywords

Navigation