Skip to main content
Log in

Topological properties of folded hyper-star networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In practice it is important to construct node-disjoint paths in networks, because they can be used to increase the transmission rate and enhance the transmission reliability. The folded hyper-star networks FHS(2n,n) were introduced to be a competitive model to both hypercubes and star graphs. They are bipartite and node-symmetric, though not edge-symmetric, and have diameter n. In this paper we construct a maximum number of node-disjoint paths between every two distinct nodes of FHS(2n,n) and show that its fault diameter is n+2 for n≥4. We also suggest a one-to-all broadcasting algorithm of FHS(2n,n) under the all-port model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akers SB, Harel D, Krishnamurthy B (1987) The star graph: an attractive alternative to the n-cube. In: Proceedings of the 1987 international conference on parallel processing, pp 393–400

    Google Scholar 

  2. Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and its implementation using a multi-stage switching box. In: Proceedings of the 7th annual international high performance computing conference. The 1993 high performance computing: new horizons supercomputing symposium, Calgary, Alberta, Canada, pp 349–357

    Google Scholar 

  3. Arabnia HR, Oliver MA (1987) A transputer network for the arbitrary rotation of digitised images. Comput J 30(5):425–433

    Google Scholar 

  4. Cheng E, Grossman JW, Lipták L, Qiu K, Shen Z (2010) Distance formula and shortest paths of the (n,k)-star graphs. Inf Sci 180:1671–1680

    Article  MATH  Google Scholar 

  5. Cheng E, Lipták L (2006) Structural properties of hyper-stars. Ars Comb 80:65–73

    MATH  Google Scholar 

  6. Cheng E, Shah M (2006) A strong structural theorem for hyper-stars. Congr Numer 179:181–191

    MathSciNet  Google Scholar 

  7. Cheng E, Shen Z, Qiu K (2009) On the surface area of the (n,k)-star graph. Theor Comput Sci 410(52):5481–5490

    Article  MathSciNet  MATH  Google Scholar 

  8. Duh DR, Chen GH (1994) Topological properties of WK-recursive networks. J Parallel Distrib Comput 23(3):468–474

    Article  MathSciNet  Google Scholar 

  9. El-Amawy A, Latifi S (1991) Properties and performance of folded hypercubes. IEEE Trans Parallel Distrib Syst 2(1):31–42

    Article  Google Scholar 

  10. Fu JS (2006) Longest fault-free paths in hypercubes with vertex faults. Inf Sci 176(7):759–771

    Article  MATH  Google Scholar 

  11. Gu QP, Peng ST (2000) An efficient algorithm for the k-pairwise disjoint paths problem in hypercubes. J Parallel Distrib Comput 60(6):764–774

    Article  MATH  Google Scholar 

  12. Hsu DF (1994) On container width and length in graphs, groups, and networks. IEICE Trans Fundam Electron Commun Comput Sci E77-A(4):1450–1466

    Google Scholar 

  13. Johnson SL, Ho CT (1989) Optimal broadcasting and personalized communication in hypercubes. IEEE Trans Comput 38(9):1249–1268

    Article  MathSciNet  Google Scholar 

  14. Kim J-S, Oh E, Lee H-O, Heo Y-N (2003) Topological and communication aspects of hyper-star graphs. In: Proceedings of the 18th international symposium on computer and information sciences. LNCS, vol 2869, pp 51–58

    Google Scholar 

  15. Kim J-S, Cheng E, Lipták L, Lee H-O (2009) Embedding hypercubes, rings and odd graphs into hyper-stars. Int J Comput Math 86(5):771–778

    Article  MathSciNet  MATH  Google Scholar 

  16. Lai CN, Chen GH (2005) Strong Rabin numbers of folded hypercubes. Theor Comput Sci 341(1–3):196–215

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee H-O, Kim J-S, Oh E, Lim H-S (2002) Hyper-star graph: a new interconnection network improving the network cost of hypercube. In: Proceedings of EurAsia ICT: information and communication technology. LNCS, vol 2510, pp 858–865

    Chapter  Google Scholar 

  18. Leighton T (1992) Introduction to parallel algorithms and architectures: arrays, trees, hypercubes. Morgan Kaufman, San Mateo

    MATH  Google Scholar 

  19. Lin T-C, Duh D-R (2008) Constructing vertex-disjoint paths in (n,k)-star graphs. Inf Sci 178:788–801

    Article  MathSciNet  MATH  Google Scholar 

  20. Rabin MO (1989) Efficient dispersal of information for security, load balancing, and fault tolerance. J ACM 36(2):335–348

    Article  MathSciNet  MATH  Google Scholar 

  21. Saad Y, Schultz MH (1988) Topological properties of hypercubes. IEEE Trans Comput 37(7):867–872

    Article  Google Scholar 

  22. Walker D, Latifi S (2010) Improving bounds on link failure tolerance of the star graph. Inf Sci 180(13):2571–2575

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang L, Subramanian S, Latifi S, Srimani PK (2006) Distance distribution of nodes in star graphs. Appl Math Lett 19(8):780–784

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu R-Y, Chen G-H, Kuo Y-L, Chang GJ (2007) Node-disjoint paths in hierarchical hypercube networks. Inf Sci 177:4200–4207

    Article  MathSciNet  MATH  Google Scholar 

  25. Yasim SS, Latifi S (2010) Optimal subcube embeddability in hypercubes with additional dimensions. Parallel Process Lett 20(1):91–99

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Lipták.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JS., Kim, S.W., Cheng, E. et al. Topological properties of folded hyper-star networks. J Supercomput 59, 1336–1347 (2012). https://doi.org/10.1007/s11227-010-0538-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-010-0538-4

Keywords

Navigation