Skip to main content
Log in

Wireless sensor networks: a survey on recent developments and potential synergies

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Wireless sensor network (WSN) has emerged as one of the most promising technologies for the future. This has been enabled by advances in technology and availability of small, inexpensive, and smart sensors resulting in cost effective and easily deployable WSNs. However, researchers must address a variety of challenges to facilitate the widespread deployment of WSN technology in real-world domains. In this survey, we give an overview of wireless sensor networks and their application domains including the challenges that should be addressed in order to push the technology further. Then we review the recent technologies and testbeds for WSNs. Finally, we identify several open research issues that need to be investigated in future.

Our survey is different from existing surveys in that we focus on recent developments in wireless sensor network technologies. We review the leading research projects, standards and technologies, and platforms. Moreover, we highlight a recent phenomenon in WSN research that is to explore synergy between sensor networks and other technologies and explain how this can help sensor networks achieve their full potential. This paper intends to help new researchers entering the domain of WSNs by providing a comprehensive survey on recent developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Rentala P, Musunuri R, Gandham S, Saxena U (2001) Survey on sensor networks. In: Proceedings of international conference on mobile computing and networking

    Google Scholar 

  2. Akyildiz I, Su W, Sankarasubramaniam Y, Cayirci E (2002) A survey on sensor networks. IEEE Commun Mag 40(8):102–114

    Article  Google Scholar 

  3. Xu N (2002) A survey of sensor network applications. IEEE Commun Mag 40(8):102–114

    Article  Google Scholar 

  4. Yoneki E, Bacon J (2005) A survey of wireless sensor network technologies: research trends and middleware’s role. University of Cambridge TR 646

  5. Karl H, Willig A (2007) Protocols and architectures for wireless sensor networks. Wiley-Interscience, New York

    Google Scholar 

  6. Rodrigues JJ, Neves PA (2010) A survey on IP-based wireless sensor network solutions. Int J Commun Syst 23(8):963–981

    Google Scholar 

  7. Ehsan S, Hamdaoui B (2012) A survey on energy-efficient routing techniques with QoS assurances for wireless multimedia sensor networks. IEEE Commun Surv Tutor 14(2):265–278

    Article  Google Scholar 

  8. Ullah S et al (2012) A comprehensive survey of wireless body area networks. J Med Syst 36(3):1065–1094

    Article  MathSciNet  Google Scholar 

  9. Celandroni N et al (2013) A survey of architectures and scenarios in satellite-based wireless sensor networks: system design aspects. Int J Satell Commun Netw 31(1):1–38

    Article  Google Scholar 

  10. Harrop P, Das R (2012) Wireless sensor networks 2012–2022. IDTechEx

  11. Harrop P (2012) Wireless sensor networks and the new Internet of things. Energy Harvest J. Available at http://www.energyharvestingjournal.com

  12. Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Netw 52(12):2292–2330

    Article  Google Scholar 

  13. Al-Karaki J, Kamal A (2004) Routing techniques in wireless sensor networks: a survey. IEEE Wirel Commun 11(6):6–28

    Article  Google Scholar 

  14. Akkaya K, Younis M (2005) A survey on routing protocols for wireless sensor networks. Ad Hoc Netw 3(3):325–349

    Article  Google Scholar 

  15. Naik P, Sivalingam K (2004) A survey of MAC protocols for sensor networks. In: Wireless sensor networks, pp 93–107

    Chapter  Google Scholar 

  16. Demirkol I, Ersoy C, Alagoz F (2006) MAC protocols for wireless sensor networks: a survey. IEEE Commun Mag 44(4):115–121

    Article  Google Scholar 

  17. Huang P, Xiao L, Soltani S, Mutka M, Xi N (2013) The evolution of MAC protocols in wireless sensor networks: a survey. IEEE Commun Surv Tutor 15(1):101–120

    Article  Google Scholar 

  18. Zhao J et al (2010) A survey of congestion control mechanisms in wireless sensor networks. In: 2010 sixth international conference on intelligent information hiding and multimedia signal processing (IIH-MSP). IEEE, New York, pp 719–722

    Chapter  Google Scholar 

  19. Michopoulos V, Guan L, Oikonomou G, Phillips I (2011) A comparative study of congestion control algorithms in IPv6 wireless sensor networks. In: 2011 international conference on distributed computing in sensor systems and workshops (DCOSS). IEEE, New York, pp 1–6

    Chapter  Google Scholar 

  20. Ramanan K, Baburaj E (2010) Data gathering algorithms for wireless sensor networks: a survey. Int J Ad hoc Sens Ubiquitous Comput 1(4):102–114

    Article  Google Scholar 

  21. Di Francesco M, Das SK, Anastasi G (2011) Data collection in wireless sensor networks with mobile elements: a survey. ACM Trans Sens Netw 8(1):7

    Article  Google Scholar 

  22. Wang F, Liu J (2011) Networked wireless sensor data collection: issues, challenges, and approaches. IEEE Commun Surv Tutor 13(4):673–687

    Article  Google Scholar 

  23. Anastasi G, Conti M, Di Francesco M, Passarella A (2009) Energy conservation in wireless sensor networks: a survey. Ad Hoc Netw 7(3):537–568

    Article  Google Scholar 

  24. Yi X-S, Jiang P-J, Wang X-W, Zhang S-C (2011) Survey of energy-saving protocols in wireless sensor networks. In: 2011 first international conference on robot, vision and signal processing (RVSP). IEEE, New York, pp 208–211

    Chapter  Google Scholar 

  25. Pal A (2010) Localization algorithms in wireless sensor networks: current approaches and future challenges. Netw Protoc Algorithms 2(1):45–73

    Google Scholar 

  26. Erol-Kantarci M, Mouftah HT, Oktug S (2011) A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Commun Surv Tutor 13(3):487–502

    Article  Google Scholar 

  27. Zeng Y, Cao J, Hong J, Zhang S, Xie L (2013) Secure localization and location verification in wireless sensor networks: a survey. J Supercomput 64(3):685–701

    Article  Google Scholar 

  28. Li N, Zhang N, Das SK, Thuraisingham B (2009) Privacy preservation in wireless sensor networks: a state-of-the-art survey. Ad Hoc Netw 7(8):1501–1514

    Article  Google Scholar 

  29. Kavitha T, Sridharan D (2010) Security vulnerabilities in wireless sensor networks: a survey. J Inf Assur Secur 5(1):31–44

    Google Scholar 

  30. Kausar F et al (2008) Scalable and efficient key management for heterogeneous sensor networks. J Supercomput 45(1):44–65

    Article  Google Scholar 

  31. Ruiz-Garcia L, Lunadei L, Barreiro P, Robla I (2009) A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends. Sensors 9(6):4728–4750

    Article  Google Scholar 

  32. Alemdar H, Ersoy C (2010) Wireless sensor networks for healthcare: a survey. Comput Netw 54(15):2688–2710

    Article  Google Scholar 

  33. Gomez C, Paradells J (2010) Wireless home automation networks: a survey of architectures and technologies. IEEE Commun Mag 48(6):92–101

    Article  Google Scholar 

  34. Oliveira LM, Rodrigues JJ (2011) Wireless sensor networks: a survey on environmental monitoring. J Commun 6(2):143–151

    Article  Google Scholar 

  35. Latré B, Braem B, Moerman I, Blondia C, Demeester P (2011) A survey on wireless body area networks. Wirel Netw 17(1):1–18

    Article  Google Scholar 

  36. Losilla F, Garcia-Sanchez A-J, Garcia-Sanchez F, Garcia-Haro J, Haas ZJ (2011) A comprehensive approach to WSN-based ITS applications: a survey. Sensors 11(11):10220–10265

    Article  Google Scholar 

  37. Durisic MP, Tafa Z, Dimic G, Milutinovic V (2012) A survey of military applications of wireless sensor networks. In: 2012 Mediterranean conference on embedded computing (MECO). IEEE, New York, pp 196–199

    Google Scholar 

  38. Liu G, Tan R, Zhou R, Xing G, Song W-Z, Lees JM (2013) Volcanic earthquake timing using wireless sensor networks. IPSN

  39. Kadri A, Yaacoub E, Mushtaha M, Abu-Dayya A (2013) Wireless sensor network for real-time air pollution monitoring. In: 2013 1st international conference on communications, signal processing, and their applications (ICCSPA). IEEE, New York, pp 1–5

    Chapter  Google Scholar 

  40. Chen M, González S, Cao H, Zhang Y, Vuong ST (2013) Enabling low bit-rate and reliable video surveillance over practical wireless sensor network. J Supercomput 65(1):287–300

    Article  Google Scholar 

  41. Ahuja SP, Myers JR (2006) A survey on wireless grid computing. J Supercomput 37(1):3–21

    Article  Google Scholar 

  42. La Malfa S (2010) Wireless sensor networks. Available online: http://www.dees.unict.it/users/bando/files/wsn.pdf

  43. Berberidis K, Ampeliotis D (2009) Signal processing & communication challenges in sensor networks. IEEE Signal Process Mag

  44. Akyildiz I, Stuntebeck E (2006) Wireless underground sensor networks: research challenges. Ad Hoc Netw 4(6):669–686

    Article  Google Scholar 

  45. Li M, Liu Y (2007) Underground structure monitoring with wireless sensor networks. In: Proceedings of the 6th international conference on information processing in sensor networks. ACM, New York, p 78

    Google Scholar 

  46. Akyildiz I, Pompili D, Melodia T (2004) Challenges for efficient communication in underwater acoustic sensor networks. ACM Rev 1(2):8

    Google Scholar 

  47. Heidemann J, Li Y, Syed A, Wills J, Ye W (2006) Underwater sensor networking: research challenges and potential applications. In: Proceedings of the IEEE wireless communications and networking conference

    Google Scholar 

  48. Akyildiz I, Melodia T, Chowdhury K (2007) A survey on wireless multimedia sensor networks. Comput Netw 51(4):921–960

    Article  Google Scholar 

  49. IEEE (2007) IEEE Standard 802.11 part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, IEEE STD 802.11-2007

  50. IEEE 802.15 Working Group for WPAN. http://www.ieee802.org/15/

  51. IEEE 802.15.4-2006 standard for information technology part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (LR-WPANs)

  52. Bluetooth low energy. http://www.bluetooth.com/Pages/Low-Energy.aspx/

  53. Wireless systems for industrial automation: process control and related applications. ISA-100.11a-2009

  54. Kim A, Hekland F, Petersen S, Doyle P (2008) When HART goes wireless: understanding and implementing the WirelessHART standard. In: IEEE international conference on emerging technologies and factory automation, pp 899–907

    Chapter  Google Scholar 

  55. EnOcean. http://www.enocean.com/en/enocean-wireless-standard/

  56. ANT technology. http://www.thisisant.com/technology

  57. Montenegro G, Kushalnagar N, Hui J, Culler D (2007) Transmission of IPv6 packets over IEEE 802.15.4 networks. Internet proposed standard RFC 4944

  58. ZigBee Alliance. Available online: http://www.zigbee.org/

  59. Buratti C, Conti A, Dardari D, Verdone R (2009) An overview on wireless sensor networks technology and evolution. Sensors 9(9):6869

    Article  Google Scholar 

  60. Dunkels A, Vasseur J (2008) IP for smart objects. IPSO Alliance White Paper 1

  61. Porcino D, Hirt W (2003) Ultra-wideband radio technology: potential and challenges ahead. IEEE Commun Mag 41(7):66–74

    Article  Google Scholar 

  62. Dardari D, Conti A, Ferner U, Giorgetti A, Win M (2009) Ranging with ultrawide bandwidth signals in multipath environments. Proc IEEE 97(2):404–426

    Article  Google Scholar 

  63. Bluetooth. Bluetooth core specification v4.0. Specification/adopted-specifications

  64. zen-sys. Available online: http://www.zen-sys.com/

  65. Z-Wave Alliance. Available online: http://www.z-wavealliance.com/technology/

  66. Wavenis Technology. http://www.coronis.com/

  67. Dash7 Alliance. http://www.dash7.org

  68. VigilNet. http://www.cs.virginia.edu/wsn/vigilnet/

  69. Jovanov E, Milenkovic A, Otto C, De Groen P (2005) A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. J NeuroEng Rehabil 2(1):6

    Article  Google Scholar 

  70. Chen M, Gonzalez S, Vasilakos A, Cao H, Leung VC (2011) Body area networks: a survey. Mob Netw Appl 16(2):171–193

    Article  Google Scholar 

  71. Mainwaring A, Szewczyk R, Anderson J, Polastre J (2007) Habitat monitoring on Great Duck Island. In: Proceedings of ACM SenSys, vol 4

    Google Scholar 

  72. Simon G et al (2004) Sensor network-based countersniper system. In: Proceedings of the 2nd international conference on embedded networked sensor systems. ACM, New York, pp 1–12

    Chapter  Google Scholar 

  73. Huang J, Amjad S, Mishra S (2005) CenWits: a sensor-based loosely coupled search and rescue system using witnesses. In: Proceedings of the 3rd international conference on embedded networked sensor systems. ACM, New York, p 191

    Google Scholar 

  74. Zhang P, Sadler C, Lyon S, Martonosi M (2004) Hardware design experiences in ZebraNet. In: Proceedings of the 2nd international conference on embedded networked sensor systems. ACM, New York, pp 227–238

    Chapter  Google Scholar 

  75. Werner-Allen G et al (2006) Deploying a wireless sensor network on an active volcano. IEEE Internet Comput 10(2):18–25

    Article  Google Scholar 

  76. Harvard Sensor Networks Lab. Volcano monitoring. Available online: http://fiji.eecs.harvard.edu/Volcano

  77. Burrell J, Brooke T, Beckwith R (2004) Vineyard computing: sensor networks in agricultural production. IEEE Pervasive Comput 3(1):38–45

    Article  Google Scholar 

  78. Lorincz K et al (2009) Mercury: a wearable sensor network platform for high-fidelity motion analysis. In: Proceedings of the 7th ACM conference on embedded networked sensor systems. ACM, New York, pp 183–196

    Chapter  Google Scholar 

  79. Kim Y, Schmid T, Charbiwala ZM, Friedman J, Srivastava MB (2008) NAWMS: nonintrusive autonomous water monitoring system. In: Proceedings of the 6th ACM conference on embedded network sensor systems. ACM, New York, pp 309–322

    Chapter  Google Scholar 

  80. Weber V (2009) Smart sensor networks: technologies and applications for green growth. The Organization for Economic Cooperation and Development

  81. Saito H, Shimogawa S, Tanaka S, Shioda S (2012) Estimating parameters of multiple heterogeneous target objects using composite sensor nodes. IEEE Trans Mob Comput 11(1):125–138

    Article  Google Scholar 

  82. Ahmed N, Rutten M, Bessell T, Kanhere SS, Gordon N, Jha S (2010) Detection and tracking using particle-filter-based wireless sensor networks. IEEE Trans Mob Comput 9(9):1332–1345

    Article  Google Scholar 

  83. Kar S, Moura JM, Ramanan K (2012) Distributed parameter estimation in sensor networks: nonlinear observation models and imperfect communication. IEEE Trans Inf Theory 58(6):3575–3605

    Article  MathSciNet  Google Scholar 

  84. Zhang X (2011) Adaptive control and reconfiguration of mobile wireless sensor networks for dynamic multi-target tracking. IEEE Trans Autom Control 56(10):2429–2444

    Article  Google Scholar 

  85. SmartSantander. Available online: http://www.smartsantander.eu/

  86. Libelium. Available online: http://www.libelium.com/

  87. Waspmote. Available online: http://www.libelium.com/products/waspmote/

  88. Shnayder V et al (2005) Sensor networks for medical care. In: Proceedings of the 3rd international conference on embedded networked sensor systems, vol 2, p 314

    Chapter  Google Scholar 

  89. GlacsWeb. Available online: http://glacsweb.org/

  90. Martinez K, Ong R, Hart J (2004) Glacsweb: a sensor network for hostile environments. In: IEEE SECON 2004. IEEE, New York, pp 81–87

    Google Scholar 

  91. Martinez K, Basford PJ, De Jager D, Hart JK (2012) A wireless sensor network system deployment for detecting stick slip motion in glaciers

  92. eDIANA: embedded systems for energy efficient buildings. Available online: http://www.artemis-ediana.eu/

  93. Buratti C, Ferri A, Verdone R (2010) An IEEE 802.15. 4 wireless sensor network for energy efficient buildings. The Internet of Things 329–338

  94. Marron PJ, Minder D (2006) Embedded WiSeNts research roadmap. Logos

  95. EC Project e-SENSE, FP6. Available online: http://www.ist-esense.org

  96. EC Project CRUISE, FP6. Available online: http://www.ist-cruise.eu

  97. European Project IST MOSAR. Available online: http://www.mosar-sic.org/

  98. Bischoff R, Meyer J, Feltrin G (2009) Wireless sensor network platforms. In: Encyclopaedia of structural health monitoring. Wiley, Chichester, pp 1229–1238

    Google Scholar 

  99. Murty R, Mainland G, Rose I, Chowdhury A, Gosain A, Bers J, Welsh M (2008) CitySense: an urban-scale wireless sensor network and testbed. In: IEEE conference on technologies for homeland security, pp 583–588

    Google Scholar 

  100. TWIST. Available online: http://www.twist.tu-berlin.de/wiki/TWIST

  101. Handziski V, Köpke A, Willig A, Wolisz A (2006) Twist: a scalable and reconfigurable testbed for wireless indoor experiments with sensor networks. In: Proceedings of the 2nd international workshop on multi-hop ad hoc networks: from theory to reality. ACM, New York, pp 63–70

    Google Scholar 

  102. Tutornet: a tiered wireless sensor network testbed. Available online: http://enl.usc.edu/projects/tutornet/

  103. MoteLab. http://motelab.eecs.harvard.edu/

  104. TinyOS. Available online: http://www.tinyos.net/

  105. Gay D, Levis P, Von Behren R, Welsh M, Brewer E, Culler D (2003) The nesC language: a holistic approach to networked embedded systems. In: Proceedings of the ACM SIGPLAN 2003 conference on programming language design and implementation. ACM, New York, p 11

    Google Scholar 

  106. Johnson D, Stack T, Fish R, Flickinger D, Stoller L, Ricci R, Lepreau J (2006) Mobile emulab: a robotic wireless and sensor network testbed. In: IEEE INFOCOM

    Google Scholar 

  107. Crossbow Technology. http://www.xbow.com/

  108. Wang Y-C, Tseng Y-C (2009) Intentional mobility in wireless sensor networks. Wirel Netw, Res Technol Appl

  109. KanseiGenie. Available online: http://kansei.cse.ohio-state.edu/KanseiGenie/

  110. GENI. The Global Environment for Network Innovation (GENI) project. Available online: http://www.geni.net

  111. NetEye Testbed. Available online: http://neteye.cs.wayne.edu/neteye/home.php

  112. Bouckaert S et al (2011) The w-ilab. t testbed. In: Testbeds and research infrastructures. Development of networks and communities. Springer, Berlin, pp 145–154

    Chapter  Google Scholar 

  113. PlanetLab: an open platform for developing, deploying, and accessing planetary-scale services. Available online: http://www.planet-lab.org/

  114. Chun B et al (2003) Planetlab: an overlay testbed for broad-coverage services. Comput Commun Rev 33(3):12

    Article  Google Scholar 

  115. OneLab: Future Internet testbeds. Available online: https://www.onelab.eu

  116. PlanetLab Europe. Available online: http://www.planet-lab.eu/

  117. SensLab: very large scale open wireless sensor network testbed. Available online http://www.senslab.info/

  118. Des Rosiers CB et al (2011) Senslab very large scale open wireless sensor network testbed. In: Proc 7th international ICST conference on testbeds and research infrastructures for the development of networks and communities (TridentCOM)

    Google Scholar 

  119. F-Lab. Available online: http://www.onelab.eu/index.php/projects/f-lab-.html

  120. CONET integrated testbed. Available online http://www.cooperating-objects.eu/testbed-simulation/integrated-testbed/

  121. Rensfelt O et al (2011) Repeatable experiments with mobile nodes in a relocatable WSN testbed. Comput J 54(12):1973–1986

    Article  Google Scholar 

  122. Hahm O, Güneş M, Schleiser K (2010) Des-testbed a wireless multi-hop network testbed for future mobile networks. In: Fifth GI/ITG KuVS workshop on future Internet

    Google Scholar 

  123. Güneş M, Blywis B, Juraschek F, Watteroth O (2010) Experimentation made easy. In: Ad hoc networks. Springer, Berlin, pp 493–505

    Google Scholar 

  124. WISEBED. Available online: http://wisebed.eu/site/

  125. Levis P, Madden S, Polastre J, Szewczyk R, Whitehouse K, Woo A, Gay D, Hill J, Welsh M, Brewer E et al (2005) Tinyos: An operating system for sensor networks. In: Ambient intelligence, pp 115–148

    Chapter  Google Scholar 

  126. Kotay K, Peterson R, Rus D (2006) Experiments with robots and sensor networks for mapping and navigation. In: Field and service robotics. Springer, Berlin, pp 243–254

    Chapter  Google Scholar 

  127. Gupta AK, Sekhar S, Agrawal DP (2004) Efficient event detection by collaborative sensors and mobile robots. In: First annual Ohio graduate student symposium on computer and information science and engineering

    Google Scholar 

  128. Tekdas O, Lim J, Terzis A, Isler V (2009) Using mobile robots to harvest data from sensor fields. IEEE Wirel Commun 16(1):22–28

    Article  Google Scholar 

  129. Dunbabin M, Corke P, Vasilescu I, Rus D (2006) Data muling over underwater wireless sensor networks using an autonomous underwater vehicle. In: Proceedings of IEEE international conference on robotics and automation, pp 2091–2098

    Google Scholar 

  130. Soysal O, Demirbas M (2010) Data Spider: a resilient mobile basestation protocol for efficient data collection in wireless sensor networks. In: Distributed computing in sensor systems. Springer, Berlin, pp 393–408

    Chapter  Google Scholar 

  131. Gaonkar S, Choudhury R (2007) Micro-Blog: map-casting from mobile phones to virtual sensor maps. In: Proceedings of the 5th international conference on embedded networked sensor systems. ACM, New York, p 402

    Google Scholar 

  132. Hassan MM, Song B, Huh E-N (2009) A framework of sensor-cloud integration opportunities and challenges. In: Proceedings of the 3rd international conference on ubiquitous information management and communication. ACM, New York, pp 618–626

    Google Scholar 

  133. Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and research challenges. J Internet Serv Appl 1(1):7–18

    Article  Google Scholar 

  134. Liu R, Wassell IJ (2011) Opportunities and challenges of wireless sensor networks using cloud services. In: Proceedings of the workshop on Internet of things and service platforms. ACM, New York, p 4

    Google Scholar 

  135. SensorCloud. Available online: http://www.sensorcloud.com/news/shelburne-vineyard-relies-wireless-sensors-and-cloud-monitor-its-vines

  136. Mitrokotsa A, Douligeris C (2009) Integrated RFID and sensor networks: architectures and applications. RFID Sens Netw 511–536

  137. Liu H, Bolic M, Nayak A, Stojmenovie I (2007) Integration of RFID and wireless sensor networks. In: Proceedings of sense ID 2007 workshop at ACN SenSys, pp 6–9

    Google Scholar 

  138. Ngai E, Riggins F (2008) RFID: technology, applications, and impact on business operations. Int J Prod Econ 112(2):507–509

    Article  Google Scholar 

  139. Akyildiz IF et al (2006) Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput Netw 50(13):2127–2159

    Article  MATH  Google Scholar 

  140. Akan O, Karli O, Ergul O (2009) Cognitive radio sensor networks. IEEE Netw 23(4):34–40

    Article  Google Scholar 

  141. Sousa M, Lopes W, Madeiro F, Alencar M (2012) Cognitive LF-Ant: a novel protocol for healthcare wireless sensor networks. Sensors 12(8):10463–10486

    Article  Google Scholar 

  142. Colitti W, Steenhaut K, Descouvemont N, Dunkels A (2008) Satellite based wireless sensor networks: global scale sensing with nano- and pico-satellites. In: Proceedings of the 6th ACM conference on embedded network sensor systems. ACM, New York, pp 445–446

    Chapter  Google Scholar 

  143. Barnhart DJ, Vladimirova T, Sweeting MN (2007) Very-small-satellite design for distributed space missions. J Spacecr Rockets 44(6):1294–1306

    Article  Google Scholar 

  144. Jacobson V, Smetters DK, Thornton JD, Plass MF, Briggs NH, Braynard RL (2009) Networking named content. In: Proceedings of the 5th international conference on emerging networking experiments and technologies. ACM, New York, pp 1–12

    Chapter  Google Scholar 

  145. Saadallah B, Lahmadi A, Festor O et al (2012) CCNx for Contiki: implementation details. Rapport technique, RT-0432. INRIA

  146. Kumar S et al (2012) Carspeak: a content-centric network for autonomous driving. Comput Commun Rev 42(4):259–270

    Article  Google Scholar 

  147. The CCNx project website. Available online: http://www.ccnx.org/

  148. Ren Z, Hail MA, Hellbrück H (2013) CCN-WSN—a lightweight, flexible content-centric networking protocol for wireless sensor networks. In: 2013 IEEE ISSNIP

    Google Scholar 

  149. Qin H, Li Z, Wang Y, Lu X, Zhang W, Wang G (2010) An integrated network of roadside sensors and vehicles for driving safety: concept, design and experiments. In: 2010 IEEE international conference on pervasive computing and communications (PerCom). IEEE, New York, pp 79–87

    Chapter  Google Scholar 

  150. Benamar M, Benamar N, Singh KD, Ouadghiri DE (2013) Recent study of routing protocols in VANET: survey and taxonomy. In: First international workshop on vehicular networks and telematics (WVNT 2013)

    Google Scholar 

  151. Chen M et al (2011) Distributed multi-hop cooperative communication in dense wireless sensor networks. J Supercomput 56(3):353–369

    Article  Google Scholar 

  152. Kramer G, Marić I, Yates R (2006) Cooperative communications. Found Trends Netw 1(3):425

    Google Scholar 

  153. Hui J, Culler D, Chakrabarti S (2009) 6LoWPAN: incorporating IEEE 802.15.4 into the IP architecture. IPSO Alliance White Paper 3

  154. Durvy M et al (2008) Making sensor networks IPv6 ready. In: Proceedings of the 6th ACM conference on embedded network sensor systems. ACM, New York, pp 421–422

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Rawat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawat, P., Singh, K.D., Chaouchi, H. et al. Wireless sensor networks: a survey on recent developments and potential synergies. J Supercomput 68, 1–48 (2014). https://doi.org/10.1007/s11227-013-1021-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-013-1021-9

Keywords

Navigation