Skip to main content

Advertisement

Log in

Multi-objective optimization design for multi-source multicasting MIMO AF relay systems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this paper, we consider a multi-source multicasting two-hop multi-input multi-output amplify-forward (AF) relay system, where multiple source nodes multicast their own messages to a group of receivers with the cooperation of an AF relay node. In particular, we aim at minimizing the transmission power consumption and the mean-squared error (MSE) of the receiver estimated signal simultaneously. However, the two objectives are coupled and even conflicting. In view of this, a multi-objective optimization (MOO) framework is adopted to achieve the trade-off between the two objectives. The formulated MOO problem (MOOP) takes into account the constraints of the MSE upper bound and the maximum transmission power budget. Since the MOOP is non-convex and hard to tackle, we propose a resource allocation algorithm by exploiting the weighted Tchebycheff approach and the optimal structure of the relay precoding matrix. Simulation results not only demonstrate the effectiveness of the proposed algorithm, but also unveil an important trade-off between the total power consumption and the MSE at receivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vishwannath S, Jindal N, Goldsmith A (2003) Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels. IEEE Trans Inf Theory 49:2658–2668

    Article  MathSciNet  Google Scholar 

  2. Laneman JN, Tse DNC, Wornell GW (2004) Cooperative diversity in wireless network: efficient protocols and outage behavior. IEEE Trans Inf Theory 50(12):3062–3080

    Article  MathSciNet  Google Scholar 

  3. Tang X, Hua Y (2007) Optimal design of non-regenerative MIMO wireless relays. IEEE Trans Wirel Commun 6(4):1398–1407

    Article  Google Scholar 

  4. Khandaker MRA, Rong Y (2013) Precoding design for MIMO relay multicasting. IEEE Trans Wirel Commun 12(7):3544–3555

    Article  Google Scholar 

  5. Singh VP, Chaturvedi AK (2015) Min-max mean squared error-based linear transceiver design for multiple-input-multiple-output interference relay channel. IET Commun 9(6):853–861

    Article  Google Scholar 

  6. Rong Y (2010) Simplified algorithms for optimizing multiuser multi-hop MIMO relay system. IEEE Trans Wirel Commun 59(10):2896–2904

    Article  Google Scholar 

  7. Zhao C, Champagne B (2015) A unified approach to optimal transceiver design for nonregenerative MIMO relaying. IEEE Trans Veh Technol 64(7):2938–2951

    Google Scholar 

  8. He Z, Lang Z, Rong Y, Qu S (2014) Joint transceiver optimization for two-way MIMO relay system with MSE constraint. IEEE Wirel Commun Lett 3(6):613–616

    Article  Google Scholar 

  9. Abu Sayed M, Mostafizur Rahaman M, Islam I, Amin MR (2015) Selection of the best two-hop AF wireless link under multiple antenna schemes over a fading channel. J Inf Process Syst 11(1):57–75

    Google Scholar 

  10. Sun Y, Ng DWK, Schober R (2015) Multi-objective optimization for power efficient full-duplex wireless communication systems. In: Proceedings of IEEE Globecom, pp 1–6

  11. Ng DWK, Lo ES, Schober R (2015) Multi-objective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer. IEEE Trans Veh Technol. 65:3166–3184

    Article  Google Scholar 

  12. Bjornson E, Jorswieck E, Debbah M, Ottersten B (2014) Multiobjective signal processing optimization: the way to balance conflicting metrics in 5G systems. IEEE Signal Process Mag 31(6):14–23

    Article  Google Scholar 

  13. Wu W, Wang B (2015) Robust secrecy beamforming for wireless information and power transfer in multiuser MISO communication system. EURASIP J Wirel Commun Netw 2015:161

    Article  Google Scholar 

  14. Zhang J, Tang J, Wang T, Chen F (2017) Energy-efficient data-gathering rendezvous algorithms with mobile sinks for wireless sensor networks. Int J Sens Netw 23(4):248–257

    Article  Google Scholar 

  15. Wu W, Wu S, Wang B (2017) Robust multi-objective beamforming design for power efficient and secure communication in MU-MISO networks. IEEE Access 5:13277–13285

    Article  Google Scholar 

  16. Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26(6):369–395

    Article  MathSciNet  Google Scholar 

  17. Benhabib W, Fizazi H (2017) A multi-objective TRIBES/OC-SVM approach for the extraction of areas of interest from satellite images. J Inf Process Syst 13(2):321–339

    Google Scholar 

  18. Leng S, Ng DWK, Zlatanov N, Schober R (2016) Multi-objective beamforming for energy-efficient SWIPT systems. In: 2016 International Conference on Computing, Networking and Communications (ICNC), Kauai, HI, pp 1–7

  19. Kay SM (1993) Fundamentals of statistical signal processing: estimation theory. Prentice Hall, Englewood Cilffs

    MATH  Google Scholar 

  20. Wang B, Xiaodu G, Ma L, Yan S (2017) Temperature error correction based on BP neural network in meteorological WSN. Int J Sens Netw 23(4):265–278

    Article  Google Scholar 

  21. Zhou M-Y, Zhao X-H (2017) A power allocation algorithm based on variational inequality problem for cognitive radio networks. J Inf Process Syst 13(2):417–427

    Google Scholar 

  22. Song C, Lee K, Lee I (2010) MMSE based transceiver designs in closed-loop non-regenerative MIMO relaying systems. IEEE Trans Wirel Commun 9(7):2310–2319

    Article  Google Scholar 

  23. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  24. Grant M, Boyd S (2010) CVX: Matlab software for disciplined convex programming (web page and software). http://cvxr.com/cvx/

  25. Zhangjie F, Huang F, Ren K, Weng J, Wang C (2017) Privacy-preserving smart semantic search based on conceptual graphs over encrypted outsourced data. IEEE Trans Inf Forensics Secur 12(8):1874–1884

    Article  Google Scholar 

  26. Palomar DP, Cioffi JM, Lagunas MA (2003) Joint Tx–Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization. IEEE Trans Signal Process 51(9):2381–2401

    Article  Google Scholar 

Download references

Acknowledgements

The work was partially supported by Swedish Research Links (348-2008-6212), the National Natural Science Foundation of China (61571241), Industry-university research Prospective joint project of Jiangsu Province (BY2014014), Major projects of Jiangsu Province university natural science research (15KJA510002) and Graduate Innovation Project of Jiangsu (KYLX15_0840).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengyin Zhang.

Appendix A

Appendix A

MSE matrix (12) can be reformulated as:

$$ MSE_{k} = {\text{tr}}\left\{ {\left[ {{\mathbf{I}}_{{N_{b} }} + {\mathbf{F}}^{H} {\mathbf{H}}^{H} {\mathbf{Q}}^{H} {\mathbf{G}}_{k}^{H} ({\mathbf{G}}_{k} {\mathbf{QQ}}^{H} {\mathbf{G}}_{k}^{H} + {\mathbf{I}}_{{N_{d} }} )^{ - 1} {\mathbf{G}}_{k} {\mathbf{QHF}}} \right]^{ - 1} } \right\} $$
(30a)
$$ = {\text{tr}}\left\{ {\left[ {{\mathbf{I}}_{{N_{b} }} - {\mathbf{F}}^{H} {\mathbf{H}}^{H} {\mathbf{Q}}^{H} {\mathbf{G}}_{k}^{H} ({\mathbf{G}}_{k} {\mathbf{QHFF}}^{H} {\mathbf{H}}^{H} {\mathbf{Q}}^{H} {\mathbf{G}}_{k}^{H} + ({\mathbf{G}}_{k} {\mathbf{QQ}}^{H} {\mathbf{G}}_{k}^{H} + {\mathbf{I}}_{{N_{d} }} ))^{ - 1} {\mathbf{G}}_{k} {\mathbf{QHF}}} \right]} \right\} $$
(30b)
$$ = {\text{tr}}\left\{ {{\mathbf{I}}_{{N_{b} }} - {\mathbf{F}}^{H} {\mathbf{H}}^{H} {\mathbf{Q}}^{H} {\mathbf{G}}_{k}^{H} ({\mathbf{G}}_{k} {\mathbf{Q}}({\mathbf{HFF}}^{H} {\mathbf{H}}^{H} + {\mathbf{I}}_{{N_{r} }} ){\mathbf{Q}}^{H} {\mathbf{G}}_{k}^{H} + {\mathbf{I}}_{{N_{d} }} )^{ - 1} {\mathbf{G}}_{k} {\mathbf{QHF}}} \right\} $$
(30c)
$$ = {\text{tr}}\left\{ {{\mathbf{I}}_{{N_{b} }} - {\mathbf{F}}^{H} {\mathbf{H}}^{H} ({\mathbf{U}}^{ - 1} - ({\mathbf{UQ}}^{H} {\mathbf{G}}_{k}^{H} {\mathbf{G}}_{k} {\mathbf{QU}} + {\mathbf{U}})^{ - 1} ){\mathbf{HF}}} \right\} $$
(30d)
$$ = {\text{tr(}}{\mathbf{I}}_{{N_{b} }} - {\mathbf{F}}^{H} {\mathbf{H}}^{H} {\mathbf{U}}^{ - 1} {\mathbf{HF}}) + {\text{tr}}({\mathbf{F}}^{H} {\mathbf{H}}^{H} ({\mathbf{UQ}}^{H} {\mathbf{G}}_{k}^{H} {\mathbf{G}}_{k} {\mathbf{QU}} + {\mathbf{U}})^{ - 1} {\mathbf{HF}}), $$
(30e)

where \( {\mathbf{U}} = {\mathbf{HFF}}^{H} {\mathbf{H}}^{H} + {\mathbf{I}}_{{N_{r} }} \).

In the above transformations, the inversion lemma is applied to obtain formula (30b) and (30c), while the matrix equality \( {\mathbf{B}}^{H} ({\mathbf{BCB}}^{H} + {\mathbf{I}})^{ - 1} {\mathbf{B}} = {\mathbf{C}}^{ - 1} - ({\mathbf{CB}}^{H} {\mathbf{BC}} + {\mathbf{C}})^{ - 1} \) is used to obtain formula (30d).

The first term in the right side of (30e) can be transformed by utilizing the matrix inversion lemma as:

$$ \begin{aligned} & {{\text{tr}}({\mathbf{I}}_{{N_{b} }} - {\mathbf{F}}^{H} {\mathbf{H}}^{H} {\mathbf{U}}^{ - 1} {\mathbf{HF}})} \\ & {\quad = {\text{tr}}\left\{ {{\mathbf{I}}_{{N_{b} }} - {\mathbf{F}}^{H} {\mathbf{H}}^{H} ({\mathbf{HFF}}^{H} {\mathbf{H}}^{H} + {\mathbf{I}}_{{N_{r} }} )^{ - 1} {\mathbf{HF}}} \right\}} \\ & { \quad= {\text{tr}}\left\{ {\left[ {{\mathbf{I}}_{{N_{b} }} + {\mathbf{F}}^{H} {\mathbf{H}}^{H} {\mathbf{HF}}} \right]^{ - 1} } \right\}.} \\ \end{aligned} $$
(31)

Applying the relay structure in (16), the matrix inversion lemma and the matrix equality \( {\mathbf{B}}^{H} ({\mathbf{BCB}}^{H} + {\mathbf{I}})^{ - 1} {\mathbf{B}} = {\mathbf{C}}^{ - 1} - ({\mathbf{CB}}^{H} {\mathbf{BC}} + {\mathbf{C}})^{ - 1} \) once again into the second term in the right side of (30e), then we can get the transformation as:

$$ \begin{aligned} & {{\text{tr}}({\mathbf{F}}^{H} {\mathbf{H}}^{H} ({\mathbf{UQ}}^{H} {\mathbf{G}}_{k}^{H} {\mathbf{G}}_{k} {\mathbf{QU}} + {\mathbf{U}})^{ - 1} {\mathbf{HF}})} \\ & {\quad = {\text{tr}}\left\{ {{\mathbf{F}}^{H} {\mathbf{H}}^{H} ({\mathbf{HFT}}^{H} {\mathbf{G}}_{k}^{H} {\mathbf{G}}_{k} {\mathbf{TF}}^{H} {\mathbf{H}}^{H} + {\mathbf{U}})^{ - 1} {\mathbf{HF}}} \right\}} \\ & {\quad = {\text{tr}}\left\{ {{\mathbf{F}}^{H} {\mathbf{H}}^{H} ({\mathbf{U}}^{ - 1} - {\mathbf{U}}^{ - 1} {\mathbf{HF}}({\mathbf{F}}^{H} {\mathbf{H}}^{H} {\mathbf{U}}^{ - 1} {\mathbf{HF}} + ({\mathbf{T}}^{H} {\mathbf{G}}_{k}^{H} {\mathbf{G}}_{k} {\mathbf{T}})^{ - 1} )^{ - 1} ){\mathbf{HF}}} \right\}} \\ & {\quad = {\text{tr}}\left\{ {\left[ {({\mathbf{F}}^{H} {\mathbf{H}}^{H} {\mathbf{U}}^{ - 1} {\mathbf{HF}})^{ - 1} + {\mathbf{T}}^{H} {\mathbf{G}}_{k}^{H} {\mathbf{G}}_{k} {\mathbf{T}}^{ - 1} } \right]} \right\},\quad \forall k.} \\ \end{aligned} $$
(32)

Therefore, we can get MSE formulation (17).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Zhang, D. & Wang, J. Multi-objective optimization design for multi-source multicasting MIMO AF relay systems. J Supercomput 74, 6815–6830 (2018). https://doi.org/10.1007/s11227-018-2275-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-2275-z

Keywords

Navigation