Skip to main content
Log in

Social spider foraging-based optimal resource management approach for future cloud

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

With the expansion of computing infrastructure of heterogeneous and distributed environment, resource management has become a big challenge. In a cloud computing environment, problems of management of resources with the tasks are encountered. Resources are the backbone of cloud, and it is very important to handle the issue of resource management efficiently. Unfortunately, the existing resource management policies, frameworks, and mechanisms are proved ineffective to handle these applications and resources. So to provide better performance of the application, the aforementioned characteristics must be addressed effectively. This paper proposes an approach that targets the maximization of server capacity by managing the resources properly, hence improving the performance of resources. In a hierarchical multilayer cloud framework, the resource management layer determines the utilization of the task set and admitted utilization of virtual machines that guarantees performance. A new novel nature inspired algorithm based on the foraging behavior of the social spider is implemented to increase the efficiency and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tchernykh A, Lozano L, Schwiegelshohn U, Bouvry P, Pecero JE, Nesmachnow S, Drozdov AY (2016) Online bi-objective scheduling for IaaS clouds ensuring quality of service. J Grid Comput. https://doi.org/10.1007/s10723-015-9340-0

    Article  Google Scholar 

  2. Bharad VH, Bheda HA (2015) SLA-based virtual machine management for mixed workloads of interactive jobs in a cloud datacenter. Int J Comput Appl 112(16):1–3. ISSN: 0975-8887

  3. Uddin M, Rahman AA (2011) Virtualization implementation model for cost effective & efficient data centers, (IJACSA). Int J Adv Comput Sci Appl 2(1):69–74

    Google Scholar 

  4. Abrol P, Gupta S, Kaur K (2016) Analysis of resource management and placement policies using a new nature inspired meta heuristic SSCWA avoiding premature convergence in cloud. In: International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), pp 127–132. ISSN: 978-1-5090-0082-1/16/$31.00 ©2016 IEEE

  5. Fakhfakh F, Kacem HH, Kacem AH (2015) Towards a provisioning algorithm for dynamic workflows in the cloud. In: 2015 IEEE 24th International Conference on Enabling Technologies: Infrastructures for Collaborative Enterprises, ISSN 978-1-4673-7692-1/15. https://doi.org/10.1109/wetice

  6. De Luca PA, Stoltz JA, Andrade MCB, Mason AC (2015) Metabolic efficiency in courtship favors males with intermediate mass in the Australian redback spider, Latrodectus hasselti. J Insect Physiol 72:35–42

    Article  Google Scholar 

  7. Buyya R, Pandey S, Vecchiola C (2009) Cloudbus toolkit for market-oriented cloud computing. In: CloudCom 2009, LNCS, vol 5931. Springer, Berlin, pp 24–44

  8. Bhatnagar S, Nath B (2003) Distributed admission control to support guaranteed services in core-stateless networks. In: IEEE INFOCOM 2003. ISSN 0-7803-7753-2/03/$17.00 (C), pp 1–11

  9. Urgaonkar R, Kozat UC, Igarashi K, Neely MJ (2010) Dynamic resource allocation and power management in virtualized data centers. In: Proceedings of the IEEE/IFIP NOMS, pp 1–8, April 2010

  10. Liu X, Yuan S-M, Lu G-H, Huang H-Y, Bellavista P (2017) Cloud resource management with turnaround time driven auto-scaling. IEEE Access 5:9831–9841. https://doi.org/10.1109/access.2017.2706019. Electronic ISSN: 2169-3536 INSPEC Accession Number: 16950483

  11. House JS, Landis KR (1988) Social relationships and health. Am Assoc Adv Sci 241(4865):540–545

    Google Scholar 

  12. Jyothi D, Anoop S, Jyothi D et al (2015) International Journal of Computer Science and Information Technologies (IJCSIT) 6(1):485–487. ISSN-0975-9646

  13. Rathore M, Rai S, Saluja N et al (2015) Load balancing of virtual machine using honey bee galvanizing algorithm in cloud. Int J Comput Sci Inf Technol 6(4):4128–4132. ISSN: 0975-9646

  14. Tchernykha A, Schwiegelsohn U, Alexandrovc V, Talbid E (2015) Towards understanding uncertainty in cloud computing resource provisioning. Procedia Comput Sci 51:1772–1781. https://doi.org/10.1016/j.procs.2015.05.387

    Article  Google Scholar 

  15. Liu C-Y, Zou C-M, Wu P (2014) A task scheduling algorithm based on genetic algorithm and ant colony optimization in cloud computing. In: 13th International Symposium on Distributed Computing and Applications to Business, Engineering and Science. 978-1-4799-4169-8/14 $31.00 © 2014 IEEE. https://doi.org/10.1109/dcabes.2014.18

  16. Zhang D (2008) Convergence analysis for generalized ant colony optimization algorithm. In: Proceedings of the 11th Joint Conference on Information Sciences. Published by Atlantis Press, pp 1–6

  17. He X, Sun X, Laszewski G (2003) A QoS guided min–min heuristic for grid task scheduling. J Comput Sci Technol 18(4):442–451

    Article  Google Scholar 

  18. Izakian H et al (2009) A novel particle swarm optimization approach for grid job scheduling. In: Information Systems, Technology and Management, pp 100–109

  19. Sarathambekai S, Umamaheswari K (2017) Intelligent discrete particle swarm optimization for multiprocessor task scheduling problem. J Algorithms Comput Technol. https://doi.org/10.1177/1748301816665521

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhao C, Zhang S, Liu Q (2009) Independent tasks scheduling based on genetic algorithm in cloud computing. 978-1-4244-3693-4/09/$25.00©2009 IEEE

  21. Mai X, Li L (2012) Bacterial foraging algorithm based on gradient particle swarm optimization algorithm. In: 8th International Conference on Natural Computation (ICNC 2012). IEEE, ISSN: 978-1-4577-2133-5/10

  22. Aron R, Chana I (2013) Bacterial foraging based hyper-heuristic for resource scheduling in grid computing. Future Gener Comput Syst 751–762. ISSN: 0167-739X. https://doi.org/10.1016/j.future.2012.09.005

  23. Mai X, Li L (2012) Bacterial foraging algorithm based on gradient particle swarm optimization algorithm. In: 2012 8th International Conference on Natural Computation, IEEE (ICNC 2012), pp 1026–1030. ISSN 978-1-4577-2133-5/10

  24. Awad AI, El-Hefnawya NA, Abdel Kader HM (2015) Enhanced particle swarm optimization for task scheduling in cloud computing environment. In: International Conference on Communication, Management and Information Technology (ICCMIT 2015), pp 920–929. ISSN 1877-0509. https://doi.org/10.1016/j.procs.2015.09.064

  25. Fang W, Yao X, Zhao X, Yin J, Xiong N (2016) A stochastic control approach to maximize profit on service provisioning for mobile cloudlet platforms. IEEE Trans Syst Man Cybern 1–13. ISSN 2168-2216

  26. Gonzalez NM, de Brito Carvalho TCM, Miers CC (2017) Cloud resource management: towards efficient execution of large-scale scientific applications and workflows on complex infrastructures. J Cloud Comput Adv Syst Appl 6:13. https://doi.org/10.1186/s13677-017-0081-4

    Article  Google Scholar 

  27. Tanu CS (2014) Dynamic resource allocation in grid computing. Int J Adv Res Comput Sci Softw Eng 4(2):423–426. ISSN 2277 128X

  28. Stoddard PK, Salazar VL (2011) Energetic cost of communication. J Exp Biol. https://doi.org/10.1242/jeb.047910

    Article  Google Scholar 

  29. Uetz GW, Choe EJ, Crespi B, Colonial web-building spiders: balancing the costs. In: The evolution of social behavior in insects and arachnid, pp 458–475

  30. Bater L (2007) Incredible insects: answers to questions about miniature marvels. Rourke Publishing LLC, Vero Beach. ISBN 978-1-60044-348-0

  31. Lubin TB (2007) The evolution of sociality in spiders. In: Brockmann HJ (ed) Advances in the study of behavior, vol 37. Academic Press, Burlington, pp 83–145

    Google Scholar 

  32. Levin S (2013) Encyclopedia of biodiversity. Academic Press, London. ISBN: 978-0-12-384719-5

  33. Campon FF (2007) Group foraging in the colonial spider parawixia bistariata (Araneidae): effect of resource level and prey size. Anim Behav. https://doi.org/10.1016/j.anbehav.2007.02.030

    Article  Google Scholar 

  34. Blamires SJ, Lee Y-H, Chang C-M, Lin I-T, Chen J-A, Lin T-Y, Tso I-M (2010) Multiple structures interactively influence prey capture efficiency in spider orb webs. Anim Behav 80:947–953. ISSN: 0003-3472/$38.00. https://doi.org/10.1016/j.anbehav.2010.09.011

  35. Whitehouse MEA, Lublin Y (1999) Competitive foraging in the social spider Stegodyphus dumicola. Anim Behav 58(3):677–688. https://doi.org/10.1006/anbe.1999.1168

    Article  Google Scholar 

  36. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197

    Article  Google Scholar 

  37. Yu JJQ, Li VOK (2015) A social spider algorithm for global optimization. J Appl Soft Comput 30(C):614–627

    Article  Google Scholar 

  38. Cuevas E, Cienfuegos M, Zaldívar D, Pérez-Cisneros M (2013) A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst Appl 40:6374–6384

    Article  Google Scholar 

  39. Cuevas E, Cienfuegos M, Rojas R, Padilla A (2015) A computational intelligence optimization algorithm based on the behavior of the social-spider. In: Computational intelligence applications in modeling and control, studies in computational intelligence. Springer, Berlin, pp 123–146. https://doi.org/10.1007/978-3-319-11017-2_6

  40. Cuevas E, Cienfuegos M, Zaldivar D, Perez-Cisneros M (2013) A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst Appl 40(16):6374–6384

    Article  Google Scholar 

  41. Abrol P, Gupta S, Kaur K (2015) Social spider cloud web algorithm (SSCWA): a new meta-heuristic for avoiding premature convergence in cloud. Int J Innov Res Comput Commun Eng 3(6):5698–5704. ISSN (Online): 2320-9801, ISSN (Print): 2320-9798. https://doi.org/10.15680/ijircce.2015.0306113

  42. Kumari E, Monika (2015) A review on task scheduling algorithms in cloud computing. Int J Sci Environ Technol 4(2):433–439. ISSN: 2278-3687 (O), 2277-663X (P)

  43. Bala A, Chana I (2014) Intelligent failure prediction models for scientific workflows. Expert Syst Appl 42:980–989. ISSN: 0957-4174. http://dx.doi.org/10.1016/j.eswa.2014.09.014

  44. Shah MN, Patel Y (2015) A survey of task scheduling algorithm in cloud computing. Int J Appl Innov Eng Manag 4(1):194–196. ISSN: 2319–4847

  45. Shimpy E, Sidhu J (2014) Different Scheduling Algorithms in Different Cloud Environment. Int J Adv Res Comput Commun Eng 3(9):8003–8006. ISSN (Online): 2278-1021 ISSN (Print): 2319-5940

  46. Kaur R, Kinger S (2014) Analysis of job scheduling algorithms in cloud computing. Int J Comput Trends Technol 9(7):379–386. ISSN: 2231-2803

  47. Ali S, Siegel HJ, Maheswaran M, Hensgen D, Ali S (2014) Representing task and machine heterogeneities for heterogeneous computing systems. Tamkang J Sci Eng 3(3):195–207

    Google Scholar 

  48. Xu X, Hu H, Hu N, Ying W (2012) Cloud task and virtual machine allocation strategy in cloud computing environment. In: NCIS 2012, CCIS 345. Springer, Berlin, pp 113–120

  49. Anithakumari S, Chandrasekaran K (2015) Autonomic cloud computing: autonomic properties embedded in cloud computing. Int J Adv Res Comput Sci Softw Eng 5(4):979–991. ISSN: 2277 128X

  50. Sudha MK, Sukumaran S (2015) Efficient Dynamic heuristic task scheduling algorithm for commercial cloud environment. Int J Sci Res Publ 5(12):139–144. ISSN 2250-3153

  51. Bonabeau E, Dorigo M, Théraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New York

  52. Banharnsakun A, Achalakul T, Sirinaovakul B (2011) The best-so-far selection in artificial bee colony algorithm. Appl Soft Comput 11:2888–2901

    Article  Google Scholar 

  53. Gordon D (2003) The organization of work in social insect colonies. Complexity 8(1):43–46

    Article  MathSciNet  Google Scholar 

  54. Yip EC, Powers KS, Avilés L (2008) Cooperative capture of large prey solves scaling challenge faced by spider societies. Proc Natl Acad Sci USA 105(33):11818–11822

    Article  Google Scholar 

  55. Oster G, Wilson E (1978) Caste and ecology in the social insects. Princeton University Press, Princeton

    Google Scholar 

  56. Rayor EC (2010) Do social spiders cooperate in predator defense and foraging without a web? Behav Ecol Sociobiol 65(10):1935–1945

    Google Scholar 

  57. Singh S, Chana I (2015) Cloud resource provisioning: survey, status and future research directions. Knowl Inf Syst 49(3):1005–1069. https://doi.org/10.1007/s10115-016-0922-3

    Article  Google Scholar 

  58. Klein CE, Segundo EHV, Mariani VC, Coelho LS (2016) Modified social-spider optimization algorithm applied to electromagnetic optimization. IEEE Trans Magn 52(3):1–4. https://doi.org/10.1109/TMAG.2015.2483059

    Article  Google Scholar 

  59. Singh S, Chana I (2016) A survey on resource scheduling in cloud computing: issues and challenges. J Grid Comput 14(2):217–264

    Article  Google Scholar 

  60. Ackermann H, Fischer S, Hoefer M (2009) Distributed algorithms for QoS load balancing. In: SPAA’09, ACM, pp 197–203. ISSN: 978-1-60558-606-9/09/08

  61. Aron R, Chana I (2012) Formal QoS policy based grid resource provisioning framework. J Grid Comput. https://doi.org/10.1007/s10723-012-9202-y

    Article  Google Scholar 

  62. Tchernykh A, Lozano L, Schwiegelshohn U, Bouvry P, Pecero JE, Nesmachnow S, Drozdov AY (2016) Online bi-objective scheduling for Iaas clouds ensuring quality of service. J Grid Comput. https://doi.org/10.1007/s10723-015-9340-0

    Article  Google Scholar 

  63. Nathuji R, Kansal A, Ghaffarkhah A (2010) Clouds: managing performance interference effects for QoS-aware clouds. In: EuroSys’10, ACM, pp 13–16. ISSN: 978-1-60558-577-2/10/04

  64. Xhafa F, Abraham A (2009) Computational models and heuristic methods for Grid scheduling problems. Future Gener Comput Syst 608–621. ISSN: 0167-739X/$. https://doi.org/10.1016/j.future.2009.11.005

  65. Szabo C, Sheng QZ, Kroeger T, Zhang Y, Yu J (2014) Science in the cloud: allocation and execution of data-intensive scientific workflows. J Grid Comput. https://doi.org/10.1007/s10723-013-9282-3

    Article  Google Scholar 

  66. Bala A, Chana I (2014) Intelligent failure prediction models for scientific workflows. Expert Syst Appl 980–989. ISSN: 0957-4174 http://dx.doi.org/10.1016/j.eswa.2014.09.014

  67. Xu X, Hu H, Hu N, Ying W (2012) Cloud task and virtual machine allocation strategy in cloud computing. In: NCIS 2012, CCIS. Springer, Berlin, pp 113–120

  68. Aron R, Chana I, Abraham A (2015) A hyper-heuristic approach for resource provisioning-based scheduling in grid environment. J Supercomput. https://doi.org/10.1007/s11227-014-1373-9

    Article  Google Scholar 

Download references

Acknowledgements

We would like to appreciate Mr. Sukhwinder Singh for his contribution and guidance. It is a great honor to work with him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Abrol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrol, P., Gupta, S. Social spider foraging-based optimal resource management approach for future cloud. J Supercomput 76, 1880–1902 (2020). https://doi.org/10.1007/s11227-018-2372-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-2372-z

Keywords

Navigation