Skip to main content

Advertisement

Log in

An efficient parallel algorithm for the coupling of global climate models and regional climate models on a large-scale multi-core cluster

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

High-performance computing for climate models has always been an interesting research area. It is valuable to nest a regional climate model within a global climate model, but large-scale simulation of the nesting or coupling severely challenges to the development of efficient parallel algorithms that fit well into multi-core clusters. This paper first presents research on the coupling of the Institute of Atmospheric Physics of Chinese Academy of Sciences Atmospheric General Circulation Model version 4.0 and the Weather Research and Forecasting model, then proposes an efficient parallel algorithm of the coupling. The algorithm includes initialization of input data, decomposition of computing grid and processes, parallel computing of component models, and data exchange by a coupler. By calling some subroutines of the Model Coupling Toolkit, the parallelization of the proposed algorithm is implemented. Experiments show that the parallel algorithm is very effective and scalable. The parallel efficiency of the algorithm on 1,024 CPU cores can reach up to 70%. Moreover, its parallel efficiency with respect to weak scalability is 72.56% on a multi-core cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang L, Ma Y, Zomaya AY et al (2015) A parallel file system with application-aware data layout policies for massive remote sensing image processing in digital earth. IEEE Trans Parallel Distrib Syst 26(6):1497–1508

    Article  Google Scholar 

  2. Wang L, Khan SU, Chen D et al (2013) Energy-aware parallel task scheduling in a cluster. Future Gener Comput Syst 29(7):1661–1670

    Article  Google Scholar 

  3. Xue W, Yang C, Fu H et al (2015) Ultra-scalable CPU-MIC acceleration of mesoscale atmospheric modeling on tianhe-2. IEEE Trans Comput 64(8):2382–2393

    Article  MathSciNet  MATH  Google Scholar 

  4. Song W, Deng Z, Wang L et al (2017) G-IK-SVD: parallel IK-SVD on GPUs for sparse representation of spatial big data. J Supercomp 73(8):3433–3450

    Article  Google Scholar 

  5. Wang L, Tao J, Ranjan R et al (2013) G-Hadoop: MapReduce across distributed data centers for data-intensive computing. Future Gener Comput Syst 29(3):739–750

    Article  Google Scholar 

  6. Wang L, Geng H, Liu P et al (2015) Particle swarm optimization based dictionary learning for remote sensing big data. Knowl-Based Syst 79:43–50

    Article  Google Scholar 

  7. Ma Y, Wang L, Liu D, Yuan T, Liu P, Zhang W (2013) Distributed data structure templates for data-intensive remote sensing applications. Concurr Comput Pract Exp 25(12):1784–1797

    Article  Google Scholar 

  8. Vertenstein M, Craig T, Middleton A et al (2011) CESM1.0.4 Users Guide. Technical report, Community Earth System Model, NCAR, USA

  9. Wehner MF, Reed KA, Li F et al (2014) The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J Adv Model Earth Syst 6(4):980–997

    Article  Google Scholar 

  10. Miyamoto Y, Kajikawa Y, Yoshida R et al (2013) Deep moist atmospheric convection in a subkilometer global simulation. Geophys Res Lett 40(18):4922–4926

    Article  Google Scholar 

  11. Craig AP, Vertenstein M, Jacob R (2012) A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. Int J High Perform Comput Appl 26(1):31–42

    Article  Google Scholar 

  12. Dennis JM, Vertenstein M, Worley PH et al (2012) Computational performance of ultra-high-resolution capability in the Community Earth System Model. Int J High Perform Comput Appl 26(1):5–16

    Article  Google Scholar 

  13. Giorgi F (1990) Simulation of regional climate using a limited area model nested in a general circulation model. J Clim 3(8):941–963

    Article  Google Scholar 

  14. Lorenz P, Jacob D (2005) Influence of regional scale information on the global circulation: a two-way nesting climate simulation. Geophys Res Lett 32:L18706. https://doi.org/10.1029/2005GL023351

    Google Scholar 

  15. Gent PR, Danabasoglu G, Donner LJ et al (2011) The community climate system model version 4. J Clim 24(19):4973–4991

    Article  Google Scholar 

  16. Cocke S, LaRow TE (2000) Seasonal predictions using a regional spectral model embedded within a coupled ocean-atmosphere model. Mon Weather Rev 128:689–708

    Article  Google Scholar 

  17. Liang XZ, Pan J, Zhu J et al (2006) Regional climate model downscaling of the U.S. summer climate and future change. J Geophys Res: Atmos 111(D10)

  18. Sun H, Zhou G, Zeng Q (2012) Assessments of the climate system model (CAS-ESM-C) using IAP AGCM4 as its atmospheric component. Chin J Atmos Sci 36(2):215–233 (in Chinese)

    Google Scholar 

  19. Dong X, Su T, Wang J, Lin R (2014) Decadal variation of the Aleutian Low-Icelandic Low seesaw simulated by a climate system model (CAS-ESM-C). Atmos Ocean Sci Lett 7(2):110–114

    Article  Google Scholar 

  20. Zhang H, Zhang M, Zeng Q (2013) Sensitivity of simulated climate to two atmospheric models: interpretation of differences between dry models and moist models. Mon Weather Rev 141(5):1558–1576

    Article  Google Scholar 

  21. Wehner MF, Ambrosiano JJ, Brown JC et al (1993) Toward a high performance distributed memory climate model. In: Proceedings the 2nd International Symposium on High Performance Distributed Computing, pp 102–113

  22. Mechoso CR, Drummond LA, Farrara JD, Spahr JA (1998) The UCLA AGCM in high performance computing environments. In: Proceedings of the 1998 ACM/IEEE conference on Supercomputing, IEEE Computer Society, pp 1–7

  23. Drake J, Foster I, Michalakes J et al (1995) Design and performance of a scalable parallel community climate model. Parallel Comput 21(10):1571–1591

    Article  MATH  Google Scholar 

  24. Mirin AA, Sawyer WB (2005) A scalable implementation of a finite-volume dynamical core in the community atmosphere model. Int J High Perform Comput Appl 19(3):203–212

    Article  Google Scholar 

  25. Yang C, Xue W, Fu H et al (2013) A peta-scalable CPU-GPU algorithm for global atmospheric simulations. In: Proceedings of the 18th ACM SIGPLAN symposium on principles and practice of parallel programming, pp 1–12

  26. Zou Y, Xue W, Liu S (2014) A case study of large-scale parallel I/O analysis and optimization for numerical weather prediction system. Future Gener Comput Syst 37:378–389

    Article  Google Scholar 

  27. Debreu L, Blayo E (2008) Two-way embedding algorithms: a review. Ocean Dyn 58(5–6):415–428

    Article  Google Scholar 

  28. Larson JW, Jacob RL, Foster I, Guo J (2001) The model coupling toolkit. In: International Conference on Computational Science. Springer, Berlin, pp 185–194

  29. Larson J, Jacob R, Ong E (2005) The model coupling toolkit: a new Fortran90 toolkit for building multiphysics parallel coupled models. Int J High Perform Comput Appl 19(3):277–292

    Article  Google Scholar 

  30. Jacob R, Larson J, Ong E (2005) M \(\times \) N communication and parallel interpolation in Community Climate System Model Version 3 using the model coupling toolkit. Int J High Perform Comput Appl 19(3):293–307

    Article  Google Scholar 

  31. Wang Y, Jiang J, Ye H, He J (2016) A distributed load balancing algorithm for climate big data processing over a multi-core CPU cluster. Concurr Comput Pract Exp 28(15):4144–4160

    Article  Google Scholar 

  32. Wang Y, Jiang J, Zhang H et al (2017) A scalable parallel algorithm for atmospheric general circulation models on a multi-core cluster. Future Gener Comput Syst 72:1–10

    Article  Google Scholar 

  33. Skamarock WC, Klemp JB, Dudhia J et al (2008) A description of the advanced research WRF version 3. NCAR technical note, TN-475+STR

  34. Michalakes J, Hacker J, Loft R et al (2008) WRF nature run. Journal of Physics: Conference Series, IOP Publishing, 125(1)

  35. Meadows L (2012) Experiments with WRF on intel\(\textregistered \) many integrated core (intel MIC) architecture. In: International Workshop on OpenMP. Springer, Berlin, pp 130–139

  36. Guerrero-Higueras AM, García-Ortega E, Sánchez JL et al (2013) Schedule WRF model executions in parallel computing environments using Python. In: Third Symposium on Advances in Modeling and Analysis Using Python

  37. He J, Zhang M, Lin W et al (2013) The WRF nested within the CESM: simulations of a midlatitude cyclone over the Southern Great Plains. J Adv Model Earth Syst 5(3):611–622

    Article  Google Scholar 

  38. Johnsen P, Straka M, Shapiro M et al (2013) Petascale WRF simulation of hurricane sandy: Deployment of NCSA’s cray XE6 blue waters. In: High Performance Computing, Networking, Storage and Analysis (SC’13), IEEE, pp 1–7

  39. Arabnia HR, Oliver MA (1986) Fast operations on raster images with SIMD machine architectures. Int J Eurographics Assoc, Comput Gr Forum 5(3):179–188

    Article  Google Scholar 

  40. Luper D, Cameron D, Miller J et al (2007) Spatial and temporal target association through semantic analysis and GPS data mining. In: Proceedings of 2007 International Conference on Information and Knowledge Engineering (IKE’07), USA, pp 251–257

  41. Thapliyal H, Arabnia HR, Bajpai R et al (2007) Combined integer and variable precision (CIVP) floating point multiplication architecture for FPGAs. In: Proceedings of 2007 International Conference on Parallel & Distributed Processing Techniques & Applications, USA, pp 449–450

  42. Thapliyal H, Arabnia HR, Srinivas MB et al (2009) Efficient reversible logic design of BCD subtractors. In: IEEE Transactions on Computational Science III. Springer, Berlin, pp 99–121

  43. Yang MQ, Athey BD, Arabnia HR et al (2009) High-throughput next-generation sequencing technologies foster new cutting-edge computing techniques in bioinformatics. BMC Genomics 10(1):

  44. Arabnia HR, Fang WC, Lee C et al (2010) Context-aware middleware and intelligent agents for smart environments. IEEE Intell Syst 25(2):10–11

    Article  Google Scholar 

  45. Jafri R, Ali SA, Arabnia HR (2013) Computer vision-based object recognition for the visually impaired using visual tags. In: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV 2013), USA, pp 400–406

  46. Thapliyal H, Jayashree HV, Nagamani AN et al (2013) Progress in reversible processor design: a novel methodology for reversible carry look-ahead adder. In: IEEE Transactions on Computational Science XVII, Springer, Berlin, pp 73–97

  47. Wang Y, Hao H, Zhang J et al (2017) Performance optimization and evaluation for parallel processing of big data in earth system models. Cluster Comput. https://doi.org/10.1007/s10586-017-1477-0

    Google Scholar 

  48. Procassini RJ, Whitman SR, Dannevik WP (1993) Porting a global ocean model onto a shared-memory multiprocessor: Observations and guidelines. J Supercomput 7(3):287–321

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61602477), National Key Research and Development Program of China (No. 2016YFB0200800), China Postdoctoral Science Foundation (No. 2016M601158), the Fundamental Research Funds for the Central Universities (No. 2652017113), Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing (No. KLIGIP-2017A04), Knowledge Innovation Program of the Chinese Academy of Sciences (No. XXH13504-03-02), and Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuzhu Wang or Jinrong Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jiang, J., Zhang, J. et al. An efficient parallel algorithm for the coupling of global climate models and regional climate models on a large-scale multi-core cluster. J Supercomput 74, 3999–4018 (2018). https://doi.org/10.1007/s11227-018-2406-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-2406-6

Keywords

Navigation