Skip to main content

Advertisement

Log in

Activity index model for self-regulated learning with learning analysis in a TEL environment

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Various learner-oriented teaching–learning models are spreading along with development of the technology-enhanced learning (TEL) environment and the spread of the massive open online course (MOOC). Vast amounts of various data are being created and accumulated from learning activities based on the TEL environment. Also, a self-regulated learning ability is required in the MOOC environment because the learning process is constituted on students making decisions by themselves. Accordingly, this study is aimed at suggesting an activity index model based on self-regulated learning and an activity index based on self-regulated learning. It is intended to provide a means to collect proof of what influences the teaching–learning activity. This model is intended to set a learning activity standard on the basis of general activity, interaction activity, and achievement activity by students. It will be possible to analyze the student’s participation level based on the activity index, which is based on self-regulated learning, to induce participation in the teaching–learning activity, and to recommend more appropriate learning activity elements. The student data are divided into score-related, time-related, and count-related groups for applications. The stabilization of the data was confirmed through time series analysis. In multiple regression analysis, the academic achievement element was set by the target variable, and the relationships among explanatory variables were confirmed. It was understood from the explanatory variables that similar student groups were highly concerned with notice participation in the learning activity. It will be possible to analyze the students’ participation levels, induce participation in the teaching–learning activities, and recommend more appropriate learning activity elements on the basis of an activity index based on self-regulated learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siemens G (2013) Learning analytics: the emergence of a discipline. Am Behav Sci 57(10):1380–1400

    Article  Google Scholar 

  2. Khalil M, Ebner M (2016) When learning analytics meets MOOCs-a review on iMooX case studies. In: International Conference on Innovations for Community Services. Springer, Cham

  3. Scheffel M, Drachsler H, Stoyanov S, Specht M (2014) Quality indicators for learning analytics. J Educ Technol Soc 17(4):117

    Google Scholar 

  4. Jo I, Kim J (2013) Investigation of statistically significant period for achievement prediction model in e-learning. J Educ Technol 29(2):285–306

    Article  MathSciNet  Google Scholar 

  5. Hu YH, Lo CL, Shih SP (2014) Developing early warning systems to predict students’ online learning performance. Comput Hum Behav 36:469–478

    Article  Google Scholar 

  6. Chatti MA, Muslim A, Schroeder U (2017) Toward an open learning analytics ecosystem. In: Kei Daniel B (ed) Big data and learning analytics in higher education. Springer, Cham

  7. Kim K (2016) Learner activity modeling based on teaching and learning activities data. KIPS Trans Softw Data Eng 5(9):411–418

    Article  Google Scholar 

  8. Mining TED (2012) Enhancing teaching and learning through educational data mining and learning analytics: an issue brief. In: Proceedings of Conference on Advanced Technology for Education

  9. Ren Z, Rangwala H, Johri A (2016) Predicting performance on MOOC assessments using multi-regression models. arXiv:1605.02269

  10. Manzo M (2017) A model for users behavior analysis and forecasting in Moodle. J e-Learn Knowl Soc 13(2):129–139

    Google Scholar 

  11. Zhang JH, Zou Q (2016) Group learning analysis and individual learning diagnosis from the perspective of Big Data. In: 2016 IEEE International Conference Cloud Computing and Big Data Analysis (ICCCBDA). IEEE

  12. Zhang W, Huang X, Wang S, Shu J, Liu H, Chen H (2017) Student performance prediction via online learning behavior analytics. In: 2017 International Symposium Educational Technology (ISET). IEEE

  13. Kuo YC, Walker AE, Schroder KE, Belland BR (2014) Interaction, Internet self-efficacy, and self-regulated learning as predictors of student satisfaction in online education courses. Internet High Educ 20:35–50

    Article  Google Scholar 

  14. Pardo A, Han F, Ellis RA (2017) Combining university student self-regulated learning indicators and engagement with online learning events to predict academic performance. IEEE Trans Learn Technol 10(1):82–92

    Article  Google Scholar 

  15. Li S, Yu C, Hu J, Zhong Y (2016) Exploring the effect of behavioral engagement on learning achievement in online learning environment: learning analytics of non-degree online learning data. In: 2016 International Conference Educational Innovation through Technology (EITT). IEEE

  16. Ndubisi NO (2004) Factors influencing e-learning adoption intention: examining the determinant structure of the decomposed theory of planned behavior constructs. In: Proceedings of the 27th Annual Conference of HERDSA. pp 252–262

  17. Zhou M (2016) Chinese university students’ acceptance of MOOCs: a self-determination perspective. Comput Educ 92:194–203

    Article  Google Scholar 

  18. Chu TH, Chen YY (2016) With Good We Become Good: understanding e-learning adoption by theory of planned behavior and group influences. Comput Educ 92:37–52

    Article  Google Scholar 

  19. Pellas N (2014) The influence of computer self-efficacy metacognitive self-regulation and self-esteem on student engagement in online learning programs: evidence from the virtual world of Second Life. Comput Hum Behav 35:157–170

    Article  Google Scholar 

  20. IMS Global Learning Consortium (2013) Learning measurement for analytics whitepaper. https://www.imsglobal.org/sites/default/files/caliper/IMSLearningAnalyticsWP.pdf. Accessed 15 Nov 2017

  21. Zhang W, Huang X, Wang S, Shu J, Liu H, Chen H (2017) Student performance prediction via online learning behavior analytics. In: 2017 International Symposium on Educational Technology (ISET). IEEE

  22. Kovanović V, Gašević D, Hatala M, Siemens G (2017) A novel model of cognitive presence assessment using automated learning analytics methods. Analytics for Learning. https://a4li.sri.com/archive/papers/Kovanovic_2017_Presence.pdf. Accessed 15 Nov 2017

  23. Ruipérez-Valiente JA, Muñoz-Merino PJ, Leony D, Kloos CD (2015) ALAS-KA: a learning analytics extension for better understanding the learning process in the Khan Academy platform. Comput Hum Behav 47:139–148

    Article  Google Scholar 

  24. Kim K, Choi YJ, Kim M, Lee JW, Park DS, Moon N (2015) Teaching–learning activity modeling based on data analysis. Symmetry 7(1):206–219

    Article  Google Scholar 

  25. Goyal Mukta, Yadav Divakar, Tripathi Alka (2017) An intuitionistic fuzzy approach to classify the user based on an assessment of the learner’s knowledge level in e-learning decision-making. J Inf Process Syst 13(1):57–67

    Google Scholar 

  26. Aghababaei S, Makrehchi M (2017) Activity-based Twitter sampling for content-based and user-centric prediction models. Hum Centric Comput Inf Sci 7(3):1–20

    Google Scholar 

  27. Pedersen T, Johansen C, Jøsang A (2018) Behavioural computer science: an agenda for combining modelling of human and system behaviours. Hum Centric Comput Inf Sci. https://doi.org/10.1186/s13673-018-0130-0

    Google Scholar 

  28. Liew TW, Zin NAM, Sahari N (2017) Exploring the affective, motivational and cognitive effects of pedagogical agent enthusiasm in a multimedia learning environment. Hum Centric Comput Inf Sci. https://doi.org/10.1186/s13673-017-0089-2

    Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2016015499). This work was also supported by Research Projects for Senior Researchers through the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF) (No. 2017-2017008886).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nammee Moon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Moon, N. Activity index model for self-regulated learning with learning analysis in a TEL environment. J Supercomput 75, 1971–1989 (2019). https://doi.org/10.1007/s11227-018-2446-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-2446-y

Keywords

Navigation