Skip to main content
Log in

A fuzzy shape representation of a segmented vessel tree and kernel-induced random forest classifier for the efficient prediction of lung cancer

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

An intelligent clinical decision support system is proposed classifying lung nodules for lung cancer prediction using a kernel-induced random forest classifier. A contourlet filter is used for image denoising. Fuzzy logic is used to represent the segmented shape of a vessel tree. The fuzzy shape of the vessel tree is then given to a classifier as a feature for learning. A hybridization of expected maximization and total variation regularisation is proposed for the vessel tree segmentation. The proposed use of a fuzzy shape vessel tree and kernel-induced random forest classifier promises to be an efficient method of detecting lung nodules for cancer diagnosis. The proposed system is evaluated for precision, recall and accuracy in comparison with many previously available techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wong MCS, Lao XQ, Ho K, Goggins WB, Tse SLA (2017) Incidence and mortality of Lung cancer: global trends and association with socioeconomic status. PMC Sci Rep 7:14300. https://doi.org/10.1038/s41598-017-14513-7

    Article  Google Scholar 

  2. Messay T, Hardie RC, Rogers SK (2010) A new computationally efficient CAD system for pulmonary Nodule detection in CT imagery. Med Image Anal 14(3):390–406. https://doi.org/10.1016/j.media.2010.02.004

    Article  Google Scholar 

  3. da Silva Sousa JRF, Silva AC, de Paiva AC, Nunes RA (2010) Methodology for automatic detection of Lung Nodules in computerized tomography images. Comput Methods Programs Biomed 98(1):1–14. https://doi.org/10.1016/j.cmpb.2009.07.006

    Article  Google Scholar 

  4. Gomathi M, Thangaraj P (2010) A computer aided diagnosis system for detection of lung cancer nodules using extreme learning machine. Int J Eng Sci Technol 2(10):5770–5779

    Google Scholar 

  5. Diciotti S, Lombardo S, Falchini M, Picozzi G, Mascalchi M (2011) Automated Segmentation refinement of small Lung Nodules in CT scans by local shape analysis. IEEE Trans Biomed Eng 58(12):3418–3428. https://doi.org/10.1109/TBME.2011.2167621

    Article  Google Scholar 

  6. Korfiatis PD, Kalogeropoulou C, Karahaliou AN, Kazantzi AD, Costaridou LI (2011) Vessel tree segmentation in presence of interstitial Lung disease in MDCT. IEEE Trans Inf Technol Biomed 15(2):214–220. https://doi.org/10.1109/TITB.2011.2112668

    Article  Google Scholar 

  7. Netto SMB, Silva AC, Nunes RA, Gattass M (2012) Automatic Segmentation of Lung Nodules with growing neural gas and support vector machine. Comput Biol Med 42(11):1110–1121. https://doi.org/10.1016/j.compbiomed.2012.09.003

    Article  Google Scholar 

  8. Sudha V, Jayashree P (2012) Lung Nodule detection in CT images using thresholding and morphological operations. Int J Emerg Sci Eng 1(2):17–21

    Google Scholar 

  9. Choi WJ, Choi TS (2012) Genetic programming-based feature transform and classification for the automatic detection of pulmonary Nodules on computed tomography images. Inf Sci 212:57–78. https://doi.org/10.1016/j.ins.2012.05.008

    Article  Google Scholar 

  10. Flores-Fernández JM, Herrera-López E, Sánchez-Llamas F, Rojas-Calvillo A, Cabrera-Galeana PA, Leal-Pacheco G, Martínez-Velázquez M, GuadalupeGonzález-Palomar M, Femat R (2012) Development of an optimized multi-biomarker panel for the detection of lung cancer based on principal component analysis and artificial neural network modeling. Expert Syst Appl 39(12):10851–10856. https://doi.org/10.1016/j.eswa.2012.03.008

    Article  Google Scholar 

  11. Keshani M, Azimifar Z, Tajeripour F, Boostani R (2013) Lung Nodule Segmentation and recognition using SVM classifier and active contour modeling: a complete intelligent system. Comput Biol Med 43(4):287–300. https://doi.org/10.1016/j.compbiomed.2012.12.004

    Article  Google Scholar 

  12. Lingayat NS, Tarambale MR (2013) A computer based feature extraction of Lung Nodule in chest x-ray image. Int J Biosci Biochem Bioinf 3(6):624. https://doi.org/10.7763/IJBBB.2013.V3.289

    Article  Google Scholar 

  13. Yuhua Gu, Kumar V, Hall LO, Goldgof DB, Li CY, Korn R, Bendtsen C, RiosVelazquez E, Dekker A, Aerts H, Lambin P, Li X, Tian J, Gatenby RA, Gillies RJ (2013) Automated delineation of Lung tumors from CT images using a single click ensemble Segmentation approach. Pattern Recognit 46(3):692–702. https://doi.org/10.1016/j.patcog.2012.10.005

    Article  Google Scholar 

  14. Heidari S, Abdullah MT, Abdullah LN (2015) A novel four-directional thresholding approach for Lung computed-tomography images by using similarity-based Segmentation technique. J Comput Sci 11(1):195. https://doi.org/10.3844/jcssp.2015.195.203

    Article  Google Scholar 

  15. Alilou M, Kovalev V, Snezhko E, Taimouri V (2014) A comprehensive framework for automatic detection of pulmonary Nodules in Lung CT images. Image Anal Stereol 33(1):13–27. https://doi.org/10.5566/ias.v33.p13-27

    Article  Google Scholar 

  16. Likhitkar MVK, Gawande U, Hajari MKO (2014) Automated Detection of cancerous lung nodule from the computed tomography images. IOSR J Comput Eng 16(1):05–11

    Article  Google Scholar 

  17. Hawkins SH, Korecki JN, Balagurunathan Y, Gu Y, Kumar V, Basu S, Gillies RJ, Hall LO, Goldgof DB, Gatenby RA (2014) Predicting outcomes of non-small cell Lung Cancer using CT image features. IEEE Access 2:1418–1426. https://doi.org/10.1109/ACCESS.2014.2373335

    Article  Google Scholar 

  18. Choi WJ, Choi TS (2014) Automated pulmonary Nodule detection based on three-dimensional shape-based feature descriptor. Comput Methods Programs Biomed 113(1):37–54. https://doi.org/10.1016/j.cmpb.2013.08.015

    Article  Google Scholar 

  19. Magdy E, Zayed N, Fakhr M (2015) Automatic classification of normal and Cancer Lung CT images using multiscale AM–FM features. J Biomed Imaging 2015:11. https://doi.org/10.1155/2015/230830

    Article  Google Scholar 

  20. Nair Aswathy S, Jacob JE (2015) Automatic lung nodule detection on CT image using region growing. Int J Eng Adv Technol (IJEAT) 4(5):157–159

    Google Scholar 

  21. Dai S, Lu K, Dong J, Zhang Y, Chen Y (2015) A novel approach of lung segmentation on chest CT images using graph cuts. Neurocomputing 168:799–807. https://doi.org/10.1016/j.neucom.2015.05.044

    Article  Google Scholar 

  22. Biradar Sunanda, Agalatakatti K (2015) Lung Cancer identification using CT images. Int J Eng Comput Sci 4(7):13022–13025

    Google Scholar 

  23. Moslemi A, Movafeghi A, Moradi S (2015) CT Medical images denoising based on new wavelet thresholding compared with curvelet and contourlet. World Acad Sci Eng Technol Int J Comput Electr Autom Control Inf Eng 9(10):2174–2179

    Google Scholar 

  24. Liu J, Ku YB, Leung S (2012) Expectation–maximization algorithm with total variation regularization for vector-valued image Segmentation. J Vis Commun Image Represent 23(8):1234–1244. https://doi.org/10.1016/j.jvcir.2012

    Article  Google Scholar 

  25. https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Deepa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, P., Suganthi, M. A fuzzy shape representation of a segmented vessel tree and kernel-induced random forest classifier for the efficient prediction of lung cancer. J Supercomput 76, 5801–5824 (2020). https://doi.org/10.1007/s11227-019-03002-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-019-03002-5

Keywords

Navigation