Skip to main content
Log in

Resource levelling problem in construction projects under neutrosophic environment

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Planning and managing resources is one of the most important topics in project management science. Resource leveling is used for improving work efficiency and minimizing cost throughout the life of the project. Fuzzy resource leveling models assume only truth-membership functions to deal uncertainties conditions surrounded by the projects and their activities duration. In this paper, we consider the objective function of scheduling problem is to minimize the costs of daily resource fluctuations using the precedence relationships during the project completion time. We design a resource leveling model based on neutrosophic set to overcome the ambiguity caused by the real-world problems. In this model, trapezoidal neutrosophic numbers are used to estimate the activities durations. The crisp model for activities time is obtained by applying score and accuracy functions. A numerical example is developed to illustrate the validation of the proposed model in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leu SS, Hung TH (2002) An optimal construction resource leveling scheduling simulation model. Can J Civ Eng 29(2):267–275

    Article  Google Scholar 

  2. Easa SM (1989) Resource leveling in construction by optimization. J Constr Eng Manag 115(2):302–316

    Article  Google Scholar 

  3. Neumann K, Zimmermann J (2000) Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints. Eur J Oper Res 127(2):425–443

    Article  MATH  Google Scholar 

  4. Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained project scheduling problem. Eur J Oper Res 207(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  5. Kastor A, Sirakoulis K (2009) the effectiveness of resource leveling tools for resource constraint project scheduling problem. Int J Project Manage 27(5):493–500

    Article  Google Scholar 

  6. Rieck J, Zimmermann J (2015) Exact methods for resource leveling problems. In: Handbook on project management and scheduling, Springer, Cham, vol 1, pp 361–387‏

    Google Scholar 

  7. El-Rayes K, Jun DH (2009) Optimizing resource leveling in construction projects. J Constr Eng Manag 135(11):1172–1180

    Article  Google Scholar 

  8. Rahman MA, Elazouni A (2015) Devising extended-duration schedules of enhanced resource leveling. Can J Civ Eng 42(8):552–562

    Article  Google Scholar 

  9. Rodrigues SB, Yamashita DS (2015) Exact methods for the resource availability cost problem. In: Handbook on project management and scheduling, Springer, Cham, vol 1, pp 319–338‏

    Google Scholar 

  10. Atan T, Eren E (2018) Optimal project duration for resource leveling. Eur J Oper Res 266(2):508–520

    Article  MathSciNet  MATH  Google Scholar 

  11. Bhaskar T, Pal MN, Pal AK (2011) A heuristic method for RCPSP with fuzzy activity times. Eur J Oper Res 208(1):57–66

    Article  MathSciNet  MATH  Google Scholar 

  12. Hossein Hashemi Doulabi S, Seifi A, Shariat SY (2010) Efficient hybrid genetic algorithm for resource leveling via activity splitting. J Constr Eng Manag 137(2):137–146

    Article  Google Scholar 

  13. Son J, Skibniewski MJ (1999) Multi-heuristic approach for resource leveling problem in construction engineering: hybrid approach. J Constr Eng Manag 125(1):23–31

    Article  Google Scholar 

  14. Christodoulou SE, Michaelidou-Kamenou A, Ellinas G (2015) Heuristic methods for resource leveling problems. In: Handbook on project management and scheduling, Springer, Cham, vol 1, pp 389–407

    Google Scholar 

  15. Ballestín F, Schwindt C, Zimmermann J (2007) Resource leveling in make-to-order production: modeling and heuristic solution method. Int J Oper Res 4(1):50–62

    MATH  Google Scholar 

  16. Kreter S, Rieck J, Zimmermann J (2014) The total adjustment cost problem: applications, models, and solution algorithms. J Sched 17(2):145–160

    Article  MathSciNet  MATH  Google Scholar 

  17. Liao TW, Egbelu PJ, Sarker BR, Leu SS (2011) Meta-heuristics for project and construction management–A state-of-the-art review. Autom Constr 20(5):491–505

    Article  Google Scholar 

  18. Van Peteghem V, Vanhoucke M (2015) Heuristic methods for the resource availability cost problem. In: Handbook on project management and scheduling, Springer, Cham, vol 1, pp 339–359

  19. Ponz-Tienda JL, Yepes V, Pellicer E, Moreno-Flores J (2013) The resource leveling problem with multiple resources using an adaptive genetic algorithm. Autom Constr 29:161–172

    Article  Google Scholar 

  20. Leu SS, Yang CH, Huang JC (2000) Resource leveling in construction by genetic algorithm-based optimization and its decision support system application. Autom Constr 10(1):27–41

    Article  Google Scholar 

  21. Savin D, Alkass S, Fazio P (1996) Construction resource leveling using neural networks. Can J Civ Eng 23(4):917–925

    Article  Google Scholar 

  22. Leu SS, Chen AT, Yang CH (1999) A fuzzy optimal model for construction resource leveling scheduling. Can J Civ Eng 26(6):673–684

    Article  Google Scholar 

  23. Masmoudi M, Hait A (2013) Project scheduling under uncertainty using fuzzy modeling and solving techniques. Eng Appl Artif Intell 26(1):135–149

    Article  Google Scholar 

  24. Long LD, Ohsato A (2008) Fuzzy critical chain method for project scheduling under resource constraints and uncertainty. Int J Project Manage 26(6):688–698

    Article  Google Scholar 

  25. Iyer P, Liu Y, Sadeghpour F, Brennan RW (2015) A fuzzy-logic based resource leveling optimization tool. IFAC-P Line 48(3):1942–1947

    Article  Google Scholar 

  26. Levy FK, Thompson GL, Wiest JD (1963) The ABCs of the critical path method. Harvard University, Graduate School of Business Administration, pp 98–108

    Google Scholar 

  27. Burgess AR, Killebrew JB (1962) Variation in activity level on a cyclical arrow diagram. J Ind Eng 13(2):76–83

    Google Scholar 

  28. Hezam IM, Abdel-Baset M, Smarandache F (2015) Taylor series approximation to solve neutrosophic multi-objective programming problem. Infinite Study, Coimbatore

    Google Scholar 

  29. El-Hefenawy N, Metwally MA, Ahmed ZM, El-Henawy IM (2016) A review on the applications of neutrosophic sets. J Comput Theor Nanosci 13(1):936–944

    Article  Google Scholar 

  30. Saaty TL (2006) The analytic network process. In: Decision making with the analytic network process, Springer, Boston, pp 1–26

  31. Abdel-Baset M, Hezam IM, Smarandache F (2016) Neutrosophic goal programming. Neutrosophic Sets Syst 11:112–118

    Google Scholar 

  32. Mahdi IM, Riley MJ, Fereig SM, Alex AP (2002) A multi-criteria approach to contractor selection. Eng Constr Architect Manag 9(1):29–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abdel-Basset.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest about the research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Basset, M., Ali, M. & Atef, A. Resource levelling problem in construction projects under neutrosophic environment. J Supercomput 76, 964–988 (2020). https://doi.org/10.1007/s11227-019-03055-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-019-03055-6

Keywords

Navigation