
Rúa Jenaro de la Fuente, s/n. Campus Vida – Universidade de Santiago de Compostela – 15782 Santiago de Compostela – citius.es

GPU Accelerated Registration of Hyperspectral Images Using
KAZE Features

Álvaro Ordóñez, Francisco Argüello, Dora B. Heras and Begüm Demir

Version: post-print

How to cite:

Ordóñez, Á, Argüello, F., Heras, D. B., & Demir, B. (2020). GPU-accelerated registration of
hyperspectral images using KAZE features. The Journal of Supercomputing, 76(12), 9478-9492

DOI:10.1007/s11227-020-03214-0

Copyright information:

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Noname manuscript No.
(will be inserted by the editor)

GPU Accelerated Registration of Hyperspectral
Images Using KAZE Features

Álvaro Ordóñez · Francisco Argüello ·
Dora B. Heras · Begüm Demir

Received: date / Accepted: date

Abstract Image registration is a common task in remote sensing, consisting
in aligning different images of the same scene. It is a computationally expensive
process, especially if high precision is required, the resolution is high, or consist
of a large number of bands, as is the case of the hyperspectral images. HSI–
KAZE is a registration method specially adapted for hyperspectral images that
is based on feature detection and takes profit of the spatial and the spectral
information available in those images. In this paper, an implementation of
the HSI–KAZE registration algorithm on GPUs using CUDA is proposed. It
detects keypoints based on non–linear diffusion filtering and is suitable for
on–board processing of high resolution hyperspectral images. The algorithm
includes a band selection method based on the entropy, construction of a
scale-space through of non-linear filtering, keypoint detection with position
refinement, and keypoint descriptors with spatial and spectral parts. Several
techniques have been applied to obtain optimum performance on the GPU.

Keywords image registration · hyperspectral data · KAZE features · remote
sensing · CUDA · GPU

Álvaro Ordóñez
Centro Singular de Investigación en Tecnolox́ıas Intelixentes (CiTIUS), Universidade de
Santiago de Compostela, Santiago de Compostela, Spain
E-mail: alvaro.ordonez@usc.es

Francisco Argüello
Departamento de Electrónica e Computación, Universidade de Santiago de Compostela,
Santiago de Compostela, Spain
E-mail: francisco.arguello@usc.es

Dora B. Heras
Centro Singular de Investigación en Tecnolox́ıas Intelixentes (CiTIUS), Universidade de
Santiago de Compostela, Santiago de Compostela, Spain
E-mail: dora.blanco@usc.es

Begüm Demir
Faculty of Electrical Engineering and Computer Science, TU Berlin, Berlin, Germany
E-mail: demir@tu-berlin.de

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

1

2 Álvaro Ordóñez et al.

1 Introduction

Nowadays, the capture of hyperspectral images is easier thanks to the new ad-
vances in image sensor technologies. Hyperspectral images consist of hundreds
of continuous spectral bands. This large amount of information had extended
the use of these images to a multitude of applications such as land use classifi-
cation [9], quality control [18], agriculture [14], and medical science [31] among
others.

Image registration is a previous fundamental task in many of these ap-
plications. It consists in estimating a geometrical transformation that maps
one image to another. Image registration methods can be classified according
to their nature in two categories [34]: area–based methods and feature–based
methods. The first group, area–based methods, work directly with image in-
tensity values while the second group, feature–based methods, seek to detect
relevant features such as regions, lines or points. This representation at a higher
level makes the feature–based methods more suitable for multisensor registra-
tion or illumination changes. Two stages may be identified in a feature–based
method: feature detection and feature description. In the first stage, the fea-
tures are usually extracted by building a pyramidal scale–space to achieve scale
invariance. In the second stage, a description is computed for each detected
feature. This description encodes the feature information into a sequence of
numbers in order to have an unique identification per feature.

The scale-invariant feature transform (SIFT) [15] is the most popular
feature–based method. It tries to detect points with distinctive features called
keypoints. Keypoints are detected by building a Gaussian scale–space following
a pyramidal model. This scale–space is built by smoothing and downsampling
the original images in order to achieve scale invariance. Different orientations
are also computed and assigned to each keypoint to achieve the rotation invari-
ance. Finally, the detected keypoints are described using a 128 value descriptor
computed from different regions of the pixel neighbourhood.

Since the publication of SIFT, different features–based methods have been
published following the same scheme. For example, the Speeded Up Robust
Features (SURF) [6] was proposed to be computationally more efficient than
SIFT replacing the pyramid of images of SIFT with a pyramid of filters, and
proposing a new descriptor with only 64 values. A more recent method, KAZE
[4], proposes a selective blur in the construction of the scale–space using a non-
linear diffusion filter instead of Gaussian filters. This selective blur maintains
the edges of the image. Moreover, it uses the Modified SURF (M–SURF) de-
scriptor [2], a modification of the original SURF descriptor to be faster and
handle the boundaries better. The same author of KAZE proposes a version of
the method called A–KAZE [5]. Unlike KAZE, A–KAZE uses a Fast Explicit
Diffusion (FED) scheme to build the scale–space and a binary descriptor, both
changes contribute to reduce the computation times.
The described methods were designed to work with grayscale images and not
with multi or hyperspectral images. Different authors proposed adaptations of
the methods in order to be specially efficient for these images. Yi et al. [32]

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

2

GPU Accelerated Registration of Hyperspectral Images Using KAZE Features 3

propose a scale restriction criteria for keypoint matching using SIFT. Li et al.
[12] also use a scale restriction but adding an orientation restriction. Vural et
al. [16] use both restrictions and improve the feature matching stage with a
shorter descriptor decreasing the CPU computation time. Teke et al. [30] intro-
duce the scale restriction of SIFT applied to SURF. In [11] the matching stage
is improved taking advantage of neighborhood information of the SIFT key-
points. However, all these methods only use one band of the spectral images.
Mukherjee et al. [17], nevertheless, propose the use of a principal component
analysis (PCA) to combine information across spectral bands. They build a
scale–space and perform an individual keypoint detection for each selected
principal component. In Dorado-Muñoz et al. [7] the scale–space is generated
taking into account all the spectral bands of the image and uses a nonlinear dif-
fusion in order to preserve the edges in the image. Al-khafaji et al. [3] present a
3D spectral-spatial SIFT for hyperspectral images. The method exploits both,
spatial and spectral, dimensions simultaneously detecting the keypoints in a
3D data cube. Moreover, they propose a new descriptor based on the distribu-
tion of the spectral-spatial gradient magnitude in the 3D neighborhood of the
keypoint. However, the method was not tested with remote sensing images.
Li et al. [13] introduce a spatial-spectral SIFT for hyperspectral classification
based on an unified model of spectral value and gradient change. Finally, in
[24], the authors propose HSI–KAZE, a method to register hyperspectral re-
mote sensing images based on KAZE but considering the spectral information.
The algorithm is oriented towards extreme situations in which the images are
very different in terms of scale, rotation, and other variations.

All the processes involving the usual tasks performed over hyperspec-
tral images as, for example, registration, classification, object detection or
change detection, are computationally demanding. The main reason is the
large amount of spectral information available in each image comprising hun-
dreds of spectral bands in many cases. The number of images available in space
agencies databases continuously increases. At the same time, new applications
of hyperespectral images to solve new problems are also emerging due to the
affordable price of the sensors that are mounted over a variety of platforms, for
example UAVs. This situation makes necessary to produce algorithms and, in
particular registration algorithms, which are efficient from the computational
point of view even when real-time computation is not always required for the
registration process.

Most of the registration algorithms mentioned in this section were designed
ignoring the computational performance. In the literature, some registration
algorithms for two-dimensional images in GPU have been proposed [8,19,26,
27,29,33]. In particular, [26] focuses on the KAZE algorithm. But none of
these algorithms is adapted to hyperspectral images, which contain more than
a hundred times the data of a typical image. The only reference of registration
algorithm on GPU specially adapted for hyperspectral images is the HYper-
spectral Fourier–Mellin algorithm (HYFM) [25]. The algorithm exploits the
information contained in the different bands of the images and it is based

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

3

4 Álvaro Ordóñez et al.

on principal component analysis, the Fast Fourier Transform (FFT), and the
combination of log-polar maps.

In this paper, the first GPU algorithm for feature-based registration adapted
for hyperspectral images based on HSI–KAZE [24] is presented. The resulting
algorithm combines the information of a set of preselected bands, and adapts
the keypoint description and the matching stages to take into account the
spectral information. The whole algorithm has been developed in CUDA to
obtain an effective exploitation of the GPU architecture. Execution times in
GPU are also compared to an OpenMP CPU implementation of the algorithm.

2 HSI–KAZE algorithm

In this section, we summarize the algorithm for registering hyperspectral im-
ages based on KAZE [4] and A–KAZE [5] features called HSI–KAZE [24].
HSI–KAZE is a feature–based method and as such it searches for distinctive
features, in this case, distinctive pixels called keypoints. The main idea is
to detect keypoints present in the two images that we want to align. Then,
knowing the correspondence between a number of keypoints in both images,
the transformation to align one in relation to the other can be calculated.

The method consists of seven stages: band selection, keypoint detection,
keypoint description, keypoint matching, band combination and registration.
Figure 1 shows the outline of the algorithm. The different stages are described
in more detail in the pseudocode of Algorithm 1.

Fig. 1: Scheme of HSI–KAZE algorithm.

The algorithm has two hyperspectral images as input data. One of the
images is referred to the reference image and the other to the target image,
the image that we want to register with respect the reference image. In the first
stage, band selection, a set of most representative bands are selected according
their entropy and inter–band distance. Next, in the second stage, keypoint
detection, each selected band is smoothed and downsampled in order to detect
keypoints with scale invariance (scale–space). The keypoints are detected in
these scale–spaces. Then, in the third stage, a descriptor made up of two parts
(a spatial and a spectral one) is computed for each detected keypoint in the
previous stage. In the fourth stage, the keypoint matching process is carried
out based on the computation of the Euclidean distance for the spatial part

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

4

GPU Accelerated Registration of Hyperspectral Images Using KAZE Features 5

of the descriptor and the cosine similarity for the spectral part. One keypoint
of the target image is assigned to each keypoint of the reference image if some
distance conditions are fulfilled. In the fifth stage, all matched keypoints from
the different bands are joined in order to exploit the spectral information.
Finally, in the last stage, registration, knowing the correspondences between a
number of keypoints of both images, the scale factor ρ, rotation angle θ, and
translation (x, y) are computed.

Algorithm 1 HSI–KAZE pseudocode.

Input: Hyperspectral reference image I1 and target image I2.
Output: Scale factor ρ, rotation angle θ, and translation (x, y).

Stage I. Band selection.
1: Feature selection over both images → B1 and B2

2: for each band b in images B1 and B2 do
Stage II. Keypoint detection.

3: Extract keypoints of Bb
1 → Pb

1

4: Extract keypoints of Bb
2 → Pb

2

Stage III. Keypoint description.
5: Calculate the M–SURF descriptor of each keypoint in Pb

1 and
append the spectral signature → Kb

1

6: Calculate the M–SURF descriptor of each keypoint in Pb
2 and

append the spectral signature → Kb
2

Stage IV. Keypoint matching.
7: Match keypoints in Kb

1 and Kb
2 → Mb

8: end for

Stage V. Band combination.
9: Combine all the matched keypoints Mb → M

Stage VI. Registration.
10: Exhaustive search of registration parameters → ρ, θ, (x, y)

3 HSI–KAZE algorithm on GPU

In this section, we introduce the main concepts behind the CUDA program-
ming model as well as the CUDA implementation of the HSI–KAZE algorithm
on GPU enhancing the relevant features that makes the algorithm in CUDA
efficient.

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

5

6 Álvaro Ordóñez et al.

3.1 CUDA GPU Programming Fundamentals

CUDA is a parallel computing platform and programming model that makes
using a GPU for general purpose computing. It allows running programs us-
ing parallel functions called kernels [28]. Each kernel executes a set of parallel
threads. Thus, each thread runs an instance of the kernel following a single in-
struction multiple thread (SIMT) programming model. The programmer have
to organize these threads into a grid of blocks. A block is a set of threads that
work together. Threads have access to different memory spaces. All threads
have access to the global memory. It is the largest memory space but it has the
lowest throughput. On the other hand, the shared memory is only visible by
the threads of the block and provides faster access to data than global mem-
ory. The Pascal GP102 architecture provides 96 KB/SM of dedicated shared
memory and 48 KB/SM L1/texture cache. Moreover, it features a 3072 KB
L2 cache.

Different optimization strategies have been applied in order to obtain the
best performance from the NVIDIA GPU:

1. Search for the best kernel configurations.
2. Reduce the data transfers between the host and device memories.
3. Minimization of memory usage by performing some computations in place.
4. Use of shared memory vs global memory.
5. Use of vectorial instructions to maximize instruction parallelism and opti-

mize memory accesses.
6. Reduction of the number of operations using warp-level primitives to avoid

shared memory latency.
7. The use of atomic operations prevents the race conditions among threads.
8. Change the order of operations to efficiently exploit the SIMT program-

ming model.
9. Unroll loops to eliminate loop control instructions.

10. Efficient computation using optimized CUDA libraries.

3.2 CUDA Implementation

In this section, we describe the GPU implementation of the HSI–KAZE al-
gorithm. In Figs. 2, 4, 5 and 6 the pseudocode of HSI–KAZE on GPU is
presented. Each process executed in GPU is placed between <> symbols and
involves more than one kernel. The GM acronym indicates that this process
is executed in global memory and SM in the shared memory.

The optimization strategies applied globally are the following. A thread
block size of 16×16 (256 threads) was configured in the sixty per cent of kernels.
In the remaining kernels, a thread block size of 8× 8 (64 threads) or 32× 16
(512 threads) was chosen to adequate the execution to the size of data (CUDA
optimization strategy 1 explained in Section 3.1). Most of the functions run
on GPU to reduce the data transfers between the host and device memories
(strategy 2). When it is possible, the computations are performed in place

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

6

GPU Accelerated Registration of Hyperspectral Images Using KAZE Features 7

to minimize the memory usage (strategy 3). Moreover, optimization strategy
1 has been applied using NVIDIA Visual Profiler tool to analyze each kernel
and identify potential performance bottlenecks. The best kernel configurations
have been chosen using this tool. Loops were unrolled in kernels where this
compiler optimization allows us to eliminate loop control instructions and
reduce the computation time (strategy 9). The highly optimized libraries CUB
[20], NVIDIA Performance Primitives (NPP) [23] and CUBLAS are used to
achieve a high-performance computation (strategy 10).

3.2.1 Band selection stage

Algorithm 2 Entropy–based Band Selection (EBS) on GPU.

Input: Hyperspectral reference image I1 and hyperspectral target
image I2.

Output: Set of selected bands B1 and B2

Parameters: Number of selected bands NB , minimum inter–band dis-
tance DB .

1: for each band b in images I1 and I2 do
2: < Entropy of band b of I1 > → e1 � GM+SM
3: < Entropy of band b of I2 > → e2 � GM+SM
4: min(e1, e2) → E[b]
5: end for

6: Sort the elements of E in descending order.
7: Select theNB bands of highest entropy with an inter–band distance greater

or equal than a minimum inter–band distance DB between consecutive
pairs. → B1 and B2

With the objective of reducing the number of bands of the hyperspectral im-
ages a band selection method is applied. The objective is selecting bands as
different as possible in order to reduce the amount of redundant informa-
tion and, as a consequence, reduce the computational cost of the algorithm.
This process is carried out by an entropy-based method called Entropy–based
Band Selection (EBS) method [24]. It maximizes the discriminant informa-
tion provided by the selected bands. Histograms are required by the entropy
calculation in order to calculate the frequency of the pixel values.

Firstly, both hyperspectral images are copied to global memory. In Algo-
rithm 2, the pseudocode of EBS on GPU is presented. First, the entropy of
each band of each hyperspectral image is computed on GPU (see Algorithm 2,
lines 2-3). The calculation of the entropy for each band is detailed in Algorithm
3. First, the maximum and minimum values per band are computed using the

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

7

8 Álvaro Ordóñez et al.

functions cub::DeviceReduce::Min and cub::DeviceReduce::Max of the CUB li-
brary [20] (strategies 4, 5, 6 and 10) (see Algorithm 3, lines 1-2). Then, the his-
togram to compute the entropy is calculated using cub::DeviceHistogram::HistogramEven
(strategies 4, 5, 7 and 10) (see Algorithm 3, line 3). Next, the entropy value is
computed performing a reduction approach (strategies 6 and 7) (see Algorithm
3, line 4).

The remaining features of EBS are calculated in the CPU because of its
simplicity. Finally, the entropies of both images are copied to host memory
and the minimum entropy of each band between the two images is selected
(see Algorithm 2, line 4). The Nb bands of highest entropy with an inter–band
distance greater or equal than DB between consecutive pairs are selected (see
Algorithm 2, lines 6–7). The selected bands are copied to a new array in
global memory while the the hyperspectral data structures are deallocated
from memory.

Algorithm 3 Entropy of a band on GPU

Input: Band dB.
Output: Entropy of band dB.

1: < cub::DeviceReduce::Min > (dB) → min � GM+SM
2: < cub::DeviceReduce::Max > (dB) → max � GM+SM
3: < cub::DeviceHistogram::HistogramEven > (dB,min,max)→ histogram

� GM+SM
4: < reduce entropy > (histogram) → entropy � GM

3.2.2 Keypoint detection stage

As it was explained in Section 2, after the band selection, a loop over the
selected bands performs two stages, keypoint detection and keypoint descrip-
tion. In this section the keypoint detection stage in GPU is explained. The
objective is detecting points with distinctive features called keypoints that are
scale invariant. A point is considered a keypoint if it is the local minimum or
maximum compared to its neighbours. With the objective of detecting these
extreme values the original images are smoothed at different levels using a non
linear diffusion filter to build a scale–space.

A scale–space consists of a pyramid of images and is obtained by itera-
tively applying two operations, downsampling and smoothing. Subsamppling
produces different Noct octaves while smoothing produces Nsub sublevels. An
additional initial upsample is applied in order to increase the resolution of the
original image.

Once the scale–space has been built, it is necessary to detect the keypoints.
A pixel will be considered as keypoint if it is the maximum of its neighbourhood
when the Hessian matrix is calculated. The determinant of the Hessian matrix
at the different scale levels needs to be calculated. The required derivatives to

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

8

GPU Accelerated Registration of Hyperspectral Images Using KAZE Features 9

compute the Hessian matrix are approximated by Scharr filters which provide
better rotation invariance than other popular filters.

Algorithm 4 presents the pseudocode of the keypoint detection stage that
calculates the keypoints for one band. The keypoint detection begins calcu-
lating the optimal number of octaves Noct according to the spatial size of the
band [24] (see Algorithm 4, line 1). Then, the band is upsampled using cu-
bic interpolation to obtain a image whose size is divisible by the number of
octaves Noct with the help of the nppiResizeSqrPixel 64f C1R function of the
NVIDIA Performance Primitives (NPP) library [23] (strategies 4 and 10) (see
Algorithm 4, line 2).

Algorithm 4 Keypoint detection stage.

Input: Band B.
Output: A set of keypoints K.
Parameters: Number of sublevels Nsub.

1: Calculate the optimal number of octaves → Noct

2: < Upsample the band to obtain images whose size is divisible by Noct > � GM
3: stage Build the pyramidal scale space
4: < Upsample the band by a factor of 2 using cubic interpolation > � GM
5: < Compute the contrast factor k > � GM+SM
6: < Smooth the upsampled band using a Gaussian filter > � GM+SM
7: for o ← 1, Noct do
8: for s ← 1, Nsub do
9: if o == 1 and s == 1 then continue

10: < Smooth using a Gaussian filter > � GM+SM
11: < Compute the Scharr derivatives > � GM+SM
12: < Compute the conductivity g > � GM
13: < Discretized the nonlinear diffusion equation > � GM+SM
14: end for
15: < Subsample the last sublevel image by a factor of 2 > � GM+SM
16: end for
17: end stage

18: stage Locate the keypoints in the scale space
19: < Compute the determinant of the Hessian matrix > � GM+SM
20: < Detect keypoints by searching in their neighbourhood > → Kb

1, Kb
2 � GM

21: < Refine the position and the scale of each keypoint > � GM+SM
22: end stage

A different scale–space is built for each image band following a pyrami-
dal scheme (see Algorithm 4, lines 3-17). First, the band is upsampled using
the same NPP function but this time by a factor of 2 in order to minimize
aliasing artifacts and extract a higher number of keypoints (GPU optimization
strategies 4 and 10 listed in Section 3) (see Algorithm 4, line 4).

Next, the contrast factor k that controls the level of diffusion of each pyra-
mid level is computed from a histogram with the distances between the vertical
and horizontal derivatives of a smoothed version of the band [4] (see Algorithm
4, line 5). Firstly, the band is smoothed using a Gaussian filter that is com-

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

9

10 Álvaro Ordóñez et al.

puted using two convolutions with a Gaussian kernel (strategies 4 and 6). Each
convolution is performed by a different kernel in order to take advantage of
the memory locality depending on the direction of the operation. Secondly, the
Scharr derivatives are computed using shared memory for the different sub-
levels [1] (strategies 4 and 6). Finally, a histogram with the distances between
these vertical and horizontal derivatives is computed to calculate the contrast
factor k. In this calculation, the strategies 5 and 6 are used to calculate the
maximum and minimum values required to compute the histogram, and the
strategies 4 and 7 to store atomically the histogram in global and shared mem-
ory. Third, once the contrast factor k was calculated, the first sublevel of the
first octave is computed performing a Gaussian blur over the upsampled band
(see Algorithm 4, line 6) as we explained before.

Then, the next sublevels are computed following these steps (see Algorithm
4, lines 7-16):

1. Copy the previous sublevel as temporal new sublevel.
2. Smooth it using the Gaussian filter (strategies 4 and 6) (see Algorithm 4,

line 10).
3. Compute the Scharr derivatives of this smoothed image (strategies 4 and

6) (see Algorithm 4, line 11).
4. Calculate the conductivity function g = 1

1+
|∇Xσ|2

k2

[24] using atomic oper-

ations (strategy 7) (see Algorithm 4, line 12).
5. Discretize the nonlinear diffusion equation using the FED scheme [4,?]

(strategy 4) (see Algorithm 4, line 13).

The computation of the next octave begins subsampling the last sublevel
image by a factor of 2 using nppiResizeSqrPixel 64f C1R (strategies 4 and 10)
(see Algorithm 4, line 15). Finally, the rest of sublevels are obtained repeating
these steps.

Once the scale–space is constructed, the stage of locating the keypoints
can begin. First, the determinant of the Hessian matrix of each sublevel is
computed (see Algorithm 4, line 19). The second order horizontal and vertical
derivatives and the second order cross derivative necessaries to compute the
determinant are calculated using three kernels in order to take advantage of
the memory locality as well as shared memory (strategy 4). The set of first
and second order derivatives are approximated by a Scharr filter reusing the
same kernels in the scale–space construction (strategies 4 and 6). Second, the
keypoints are located by searching for pixels that are the maxima of their
neighbourhood in the Hessian matrix (see Algorithm 4, line 20).

An important optimization is performed here with respect to the CPU ver-
sion (strategy 8). In the CPU version, when a possible keypoint is detected, it
is immediately compared with all previous keypoints in order to ensure that it
was not previously detected in the same and in the previous sublevels. In the
proposed GPU implementation, first, we locate all possible keypoints in the
sublevel, and, then, we compare these keypoints with only the detected key-
points in the same and the previous sublevels. Both steps are implemented in

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

10

GPU Accelerated Registration of Hyperspectral Images Using KAZE Features 11

different GPU kernels and both use atomic operations to prevent the race con-
ditions among threads (strategy 7). Finally, when the detection is completed
along the entire scale–space, the detected keypoints are refined in position and
scale (see Algorithm 4, line 21). Keypoints could be removed in this stage due
to their instability. An optimized filtering approach with atomic operations
and computed in shared memory is performed to remove them (strategies 4
and 7).

3.2.3 Keypoint description stage

The next stage of the HSI–KAZE algorithm is the keypoint description. A
descriptor is a vector computed for each keypoint that is distinctive and in-
variant to variations such as rotation, scale, illumination, etc. It is used in the
matching stage to try to find the same keypoint in the other image.

In this stage, the spatial and spectral keypoint descriptor that we call HSI–
SURF descriptor is computed for each detected keypoint in the previous stage.
The process followed is detailed in Algorithm 5.

Firstly, the spatial part of the HSI–SURF descriptor, the M–SURF de-
scriptor [2], is computed. First, the main orientation of each keypoint is esti-
mated, and next, the M–SURF descriptor is computed [24]. These steps are
characterized by a high computational use of registers due to the high use of
mathematical functions to compute the derivatives and to apply the Gaussian
filters. As a result, a 64 value spatial descriptor for each keypoint is generated.
Finally, the spectral signature of each keypoint is assigned to the spectral part
of the descriptor.

Algorithm 5 Keypoint description stage.

Input: Band B.
Output: A set of keypoints K.

1: for each keypoint in K do
2: < Calculate the main orientation > � GM
3: < Compute the M–SURF descriptor > � GM
4: Append the spectral signature
5: end for

3.2.4 Keypoint matching and band combination stages

After the keypoint description, two sets of keypoints are stored, one for each
image. As we mentioned before, the HSI–SURF descriptor for each keypoint
is made up of two parts: a spatial and a spectral one. The matching stage has
the objective of finding pairs of keypoints in each band of both images. The
keypoints of each band are independently matched. Two conditions must be
fulfilled in order to consider the matching of a pair of keypoints, one is based
on a ratio of Euclidean distances, the other is based on the cosine similarity

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

11

12 Álvaro Ordóñez et al.

between the spectral signature of the keypoints [24]. The pseudocode of the
keypoint matching and the band combination stages is shown in Algorithm 6.

For each band, we have two matrices of keypoint descriptors Kb
1 and Kb

2

of dimension 64 × nb
1 and 64 × nb

2, respectively. n
b
1 and nb

2 are the number of
keypoints detected in each band b and image, i.e., the keypoint descriptors are
stored by columns. Given a keypoint p of Kb

1, we have to find the two nearest
keypoints q0, q1 of Kb

2 to that keypoint. An approximation of the Euclidean
distance is used to rewrite it to involve matrix operations [10]:

d2Euclidean(p, q) = (p− q)�(p− q) = ‖p‖2 + ‖q‖2 − 2p�q (1)

where ‖.‖ is the Euclidean norm. We can extend it to handle set of keypoints,

d2Euclidean(K
b
1,K

b
2) = SNb

1 + SNb
2 − 2Kb

1K
b
2

T
(2)

where SNb
1 and SNb

2 are matrices of one row composed by Euclidean norm
of each column of Kb

1 and Kb
2, respectively. The square norm of the reference

keypoints and target keypoints are computed in global memory (see Algorithm
6, lines 3-4).

Next, H = −2Kb
1K

b
2
T

is calculated using the function cublasDgemm of
CUBLAS library [21] (strategies 4 and 10) (see Algorithm 6, line 5). Then,
each i element of SNb

2 is added to every element of the ith row of H using
shared memory (strategy 4). The result is stored in D (see Algorithm 6, line
6).

A modified insertation sort algorithm is used to find the 2 smallest values
for each column of matrix D, i.e., for each reference keypoint (see Algorithm 6,
line 7). Each thread sorts all the computed distances for a reference keypoint.
Assuming that the first smallest value of the array of distances D is already
sorted (in D[0]), an element i will be inserted in the correct position only if
D[i] < D[0]. This modification reduces the number of stores to global memory
minimizing the memory usage.

Finally, the i element of SNb
1 is added to the 2 smallest values in D and

the square root is computed. It can be done after the sorting because these
operations do not influence the distance order [10].

With the two nearest reference keypoints q0, q1 to the keypoint p, to con-
sider the match of p and q0 two conditions must be fulfilled (see Algorithm 6,
lines 9-15). This part of the implementation is computed on CPU due to the
low computational complexity of the task. First, the ratio of the Euclidean
distances between keypoint p of the reference image and the two nearest key-
points q and r of the target image must be smaller than a distance ratio Dratio.
Second, the cosine similarity between the spectral signature of keypoints p and
q must be lower than a value R. The spectral part of the descriptor allows re-
moving false matches. Dratio was fixed to 0.6 and R is fixed to 0.9. Both values
were chosen experimentally. In the case of considering a match, the matched
keypoints are inserted in the array M (see Algorithm 6, line 12).

The matched keypoints extracted corresponding to the different selected
bands are joined at the end of this stage. This way, different features not

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

12

GPU Accelerated Registration of Hyperspectral Images Using KAZE Features 13

present in all bands are taken into account. Finally, the repeated matches are
removed (see Algorithm 6, line 17).

Algorithm 6 Keypoint matching and band combination.

Input: Matrix of keypoint descriptors K for each selected band of both images.
Output: Array M of N matched pairs.
Parameters: Distance ratio Dratio, spectral similarity ratio R.

1: N ← 0
2: for each band b in images B1 and B2 do
3: < Compute the Euclidean norm of each column of Kb

1 >→ SNb
1 � GM

4: < Compute the Euclidean norm of each column of Kb
2 >→ SNb

2 � GM

5: <Compute −2Kb
1K

b
2
T

using cuBLAS >→ H � GM+SM

6: < SNb
2 +H >→ D � GM+SM

7: < For each column of matrix D (i.e. for each reference keypoint) finds the 2 smallest
values > � GM

8: <
√

SNb
1 +D >→ D � GM

9: for each keypoint p in Kb
1 do

10: Select q0, q1 as the two nearest keypoints of Kb
2 to the keypoint p according D

11: if
D[q0][p]
D[q1][π]

< Dratio and dCosine(fp, fq0) < R then

12: Match p and q0 → M [N]
13: N ← N + 1
14: end if
15: end for
16: end for
17: Remove repeated matches in M [N]

3.2.5 Registration stage

Once the correspondence between keypoints present in both images is found,
the geometrical transformation to map the target image to the reference image
must be computed. In this last stage, an exhaustive search based on histograms
is performed to register the images [24]. For each combination of two matched
pairs (4 keypoints), scale factor, rotation angle, and translation parameters
are calculated. Then, a selection using histograms is performed. This stage is
computed in CPU due to its low computational cost.

4 Results

This section presents the results obtained. First, the test images, the PC and
the GPU used are described. The results are first shown in terms of registra-
tion accuracy showing that the same results as in CPU are obtained by the
GPU registration algorithm proposed. Then, the results are analyzed in terms
of execution time for the GPU version comparing to an efficient OpenMP al-
gorithm executed in CPU. Finally, some insights on the results obtained are
given.

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

13

14 Álvaro Ordóñez et al.

4.1 Test Images and Experimental Setup

The algorithm was evaluated on a PC with a quad-core Intel Xeon E5–2623v4
at 2.6 GHz and 128 GB of RAM under Ubuntu 16.04.6. The CPU version was
compiled using the gcc and the g++ 5.4.0 version. Regarding the GPU imple-
mentation, the CUDA code runs on a Tesla P40 with 30 SMs and 128 CUDA
cores each. The CUDA code was compiled using nvcc with version 9.0.176, as
well as the CUB 1.8.0 version. Performance results in terms of registration pre-
cision, computation time and speedup are presented. In the computation times
and speedup results, we provide the average of ten independent executions for
each experiment.

The algorithm was evaluated over seven different scenes covering a variety
of land uses. Information about the images can be seen in Table 1. They present
different sizes, number of bands and resolutions in order to test the algorithm
in different conditions.

Table 1: Sensor, size, number of spectral bands, resolution (m/pixel), and
location of the test hyperspectral images.

Scene Sensor Size Bands
Spatial

Resolution

Indian Pines AVIRIS 145× 145 220 20
Salinas Valley AVIRIS 512× 217 204 3.7
Pavia University ROSIS–03 610× 340 103 1.3
Pavia Centre ROSIS–03 1096× 715 102 1.3
Santa Barbara Front 2009 AVIRIS 900× 470 224 16.4
Santa Barbara Front 2010 AVIRIS 900× 470 224 11.3
Jasper Ridge 2006 AVIRIS 1286× 588 224 3.3
Jasper Ridge 2007 AVIRIS 1286× 588 224 3.4
Santa Barbara Box 2013 AVIRIS 1024× 769 224 15.2
Santa Barbara Box 2014 AVIRIS 1024× 769 224 15.2

The first four images were taken by the ROSIS–03 (Reflective Optics Sys-
tem Imaging Spectrometer) sensor, the Pavia University and Pavia Centre
images, and the AVIRIS (Airbone Visible/Infrared Imaging Spectometrer) sen-
sor, the Indian Pines and Salinas Valley images. For these four images as only
one image of the scene is available, the set of target images to evaluate the
algorithm in terms of registration precision is created by applying different
rotation angles and scale factors to the original images. This way, we can test
the method in a controlled environment.

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

14

GPU Accelerated Registration of Hyperspectral Images Using KAZE Features 15

N

0 3 km

(a)

N

0 3 km

(b)

N

0 1 km

(c)

N

0 1 km

(d)

N

0 5 km

(e)

N

0 5 km

(f)

Fig. 2: Pairs of test hyperspectral images taken by AVIRIS: (a) Reference Santa
Barbara Front image taken on 30 March 2009, (b) Target Santa Barbara Front
image taken on 30 April 2010, (c) Reference Jasper Ridge image taken on 5
December 2006, (d) Target Jasper Ridge image taken on 13 August 2007, (e)
Reference Santa Barbara Box image taken on 11 April 2013, and (f) Target
Santa Barbara Box image taken on 16 April 2014.

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

15

16 Álvaro Ordóñez et al.

The last six images correspond to three different scenes and are well–known
hyperspectral images in the remote sensing area. These were taken by the
AVIRIS sensor at different year. They present changes in illumination, vegeta-
tion, buildings, roads, etc., as well as different scale factor, rotation angle and
translation. Moreover, different rotation angles and scale factors are applied to
the second image of each pair in order to extender our experiment. An RGB im-
age of these images can be seen in Figure 2. The complete dataset is available in
https://gitlab.citius.usc.es/hiperespectral/RegistrationRepository.

4.2 Performance Results in Terms of Registration Precision

In this section, the evaluation of HSI–KAZE in terms of registration precision
is presented. The registration process consists in registering one image, the
reference image, with respect to second image, the target image, of the scene.
In order to increase the experimental range, different scale factors and rotation
angles are applied to the target image of each pair. The scale ranges go from
1/15× to 24.0× in increments of 0.5. In total, 63 scale factors. For each scale
factor, 72 rotation angles are applied. From 0 to 360 in increments of 5. As a
result, a total of 4, 464 cases was proved for each scene.

Table 2 summarizes the successfully registered cases for each scene using
HSI–KAZE on GPU. The implementation on GPU achieves the same results
as the CPU version. A detailed comparison with other methods of literature
and an exhaustive evaluation in terms of registration precision can be seen in
[24].

Table 2: Successfully registered cases for each scene using HSI–KAZE on GPU.
The number in parentheses summarizes the number of scales that were cor-
rectly registered for all angles. If an angle is incorrectly registered, the whole
scale factor is considered incorrect, i.e., this case is not included in the table.

Scene
Range of scales factors
correctly registered

Pavia University 1/11× to 13.0× (35)
Pavia Centre 1/15× to 24.0× (61)
Indian Pines 1/4× to 5.0× (12)
Salinas Valley 1/7× to 6.0× (17)
Jasper Ridge 1/11× to 12.0× (33)
Santa Barbara Front 1/8× to 9.0× (24)
Santa Barbara Box 1/9× to 8.5× (24)

Number of scalings (average) (29.43)

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

16

GPU Accelerated Registration of Hyperspectral Images Using KAZE Features 17

4.3 Performance Results in Terms of Computation Times

In this section, the performance results in terms of computation times for HSI–
KAZE are presented. The procedure test is the same as in previous section
but the last correctly registered scale is considered for each scene according to
Table 2.

In order to compare the GPU implementation of the algorithm according to
a high performance baseline, an OpenMP implementation was developed. The
achieved speedup over the CPU one thread for the OpenMP implementation
for all scenes changing the number of threads is presented in Figure 3. The
achieved speedup is higher as the number of threads increase. The algorithm
on CPU scales better for the bigger images, i.e., for Santa Barbara Line and
Santa Barbara Front.

Fig. 3: Speedup for the OpenMP code when the number of threads increases
with respect to the OpenMP version for only one thread.

The CPU and GPU execution times and speedup implementation per stage
of the algorithm are presented in Table 3 for the registration of the Jasper
Ridge scene. The CPU execution times correspond to the best CPU imple-
mentation, i.e., considering 16–threads. The speedup of the GPU version is
also calculated with respect to the 16–thread OpenMP execution time.

The highest speedup, 47.44×, is achieved in the band selection stage. The
computation of the entropy for each band is specially well adapted to the SIMT
computation model of GPU. Up to 5 GPU optimization strategies are used
at this stage: the use of shared memory and vectorial instructions to optimize
the memory access, the use of warp–level primitives avoiding shared memory
latency, the use of atomic operation to avoid race conditions, and the efficient
computation using the optimized CUB library.

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

17

18 Álvaro Ordóñez et al.

A high speedup is also achieved in the keypoint matching and band com-
bination stages. The approximation of the Euclidean distance using matrix
computations allow us to find the 2-nearest keypoints for all the reference
keypoints in parallel and efficiently. Two reasons are the key for this high
computational efficiency. First, the matrix multiplication computed as part
of this approximation is the key to the high degree of parallelism achieved.
Second, the use of a modified version of the insertation sort algorithm reduces
the memory usage.

In the keypoint detection stage, a speedup of 15.68× is achieved thanks to
the use of the proposed optimization strategies, highlighting the change in the
order of the operations in the keypoint location substage in order to efficiently
exploit the SIMT programming model of the GPU.

Because of the intensive use of registers required in the keypoint descrip-
tion, the speedup in this stage is 2.41×.

Table 3: OpenMP CPU and CUDA GPU execution times (in seconds) and
speedup over the OpenMP 16 threads implementation per stage of the HSI–
KAZE algorithm for Jasper Ridge scene.

Stage CPU (s) GPU (s) Speedup

Band selection 25.38 0.54 47.44×
Keypoint detection 73.69 4.70 15.68×
Keypoint description 8.73 3.63 2.41×
Keypoint matching and
Band combination

61.95 1.94 31.90×
Registration 0.01s - -

Table 4 compares the execution times for all scenes between the OpenMP
16–threads version and the CUDA GPU implementation. When the image
size is larger and a higher number of keypoints are detected, higher speedups
are achieved. For example, for the images of 600 MiB and 1,000,000 detected
keypoints, a speedup around 13.00× is achieved.

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

18

GPU Accelerated Registration of Hyperspectral Images Using KAZE Features 19

Table 4: OpenMP CPU and CUDA GPU execution times (in seconds) and
speedup over the OpenMP 16 threads implementation for HSI–KAZE for each
scene.

Scene Size (MiB)
Number of

detected keypoints
CPU (s) GPU (s) Speedup

Indian Pines 18 34,407 3.00 0.91 3.31×
Pavia University 82 305,652 23.03 3.10 7.43×
Salinas Valley 87 123,922 9.59 1.74 5.51×
Pavia Centre 305 1,081,454 109.65 9.86 11.12×
Santa Barbara Front 362 699,935 79.05 6.92 11.42×
Jasper Ridge 647 1,168,880 170.50 12.60 13.53×
Santa Barbara Box 673 1,097,362 168.70 12.12 13.92×

The achieved and theoretical GPU occupancy for each stage of the HSI–
KAZE algorithm for the Jasper Ridge scene is shown in Table 5. We obtained
these measures using the NVIDIA Profiling Tool (NVPROF) which provides
the metrics at kernel level. For this reason, the occupancy values at stage level
are calculated by weighting each kernel occupancy by its execution time with
respect to the total execution time of the stage. In all stages, the achieved and
theoretical GPU occupancy values are limited by registers per multiproces-
sor due to high number of mathematical operations required, especially in the
computation of the spatial descriptor. It is important to note that higher occu-
pancy does not imply necessarily higher performance. There is a point above
which additional occupancy does not improve performance [22]. HSI–KAZE
on GPU was developed prioritizing low execution time over other metrics.

Table 5: Achieved and theoretical GPU occupancy per stage of the HSI–KAZE
algorithm for Jasper Ridge scene.

Achieved Occupancy Theoretical Occupancy

Band Selection 0.69 0.80
Keypoint detection 0.23 0.96
Keypoint description 0.26 0.30
Keypoint matching and
Band combination

0.65 0.76

5 Conclusions

In this paper a CUDA GPU implementation of the HSI–KAZE method for reg-
istering hyperspectral images is presented. The algorithm is based on KAZE
and A–KAZE features exploiting the spectral information using different bands
and incorporating spectral information to the keypoint descriptors. The pro-
posed implementation efficiently exploits the thousands of available threads on

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

19

20 Álvaro Ordóñez et al.

the GPU, obtaining a considerable reduction in execution time as compared to
the OpenMP CPU implementation. The band selection and keypoint match-
ing stages are the most optimized in GPU thanks to the use of the proposed
optimization strategies, highlighting the use of parallel reductions using warp–
level primitives, atomic operations, vectorial instructions and shared memory.
Experiments show a speedup of 13× over an efficient multicore implementation
in OpenMP in the case of hyperspectral images of size 600 MB.

Acknowledgements This work was supported in part by the Conselleŕıa de Educación,
Universidade e Formación Profesional [grant numbers GRC2014/008, ED431C 2018/19, and
ED431G/08] and Ministerio de Economı́a y Empresa, Government of Spain [grant num-
ber TIN2016-76373-P] and by Junta de Castilla y Leon - ERDF (PROPHET Project)
[grant number VA082P17]. All are co–funded by the European Regional Development Fund

(ERDF). The work of Álvaro Ordóñez was also supported by Ministerio de Ciencia, Inno-
vación y Universidades, Government of Spain, under a FPU Grant [grant numbers FPU16/03537
and EST18/00602].

References

1. Acción, A., Argüello, F., B. Heras, D.: Extended anisotropic diffusion profiles in gpu for
hyperspectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing pp. 1–13 (2019). DOI 10.1109/JSTARS.2019.2939857

2. Agrawal, M., Konolige, K., Blas, M.R.: Censure: Center surround extremas for realtime
feature detection and matching. In: European Conference on Computer Vision, pp.
102–115. Springer (2008)

3. Al-khafaji, S.L., Zhou, J., Zia, A., Liew, A.W.C.: Spectral-spatial scale invariant feature
transform for hyperspectral images. IEEE Transactions on Image Processing 27(2),
837–850 (2017)

4. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: European Conference
on Computer Vision, pp. 214–227. Springer (2012)

5. Alcantarilla, P.F., Nuevo, J., Bartoli, A.: Fast explicit diffusion for accelerated features
in nonlinear scale spaces. IEEE Trans. Patt. Anal. Mach. Intell 34(7), 1281–1298 (2011)

6. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF).
Computer vision and image understanding 110(3), 346–359 (2008)

7. Dorado-Muñoz, L.P., Velez-Reyes, M., Mukherjee, A., Roysam, B.: A vector sift detector
for interest point detection in hyperspectral imagery. IEEE transactions on Geoscience
and Remote sensing 50(11), 4521–4533 (2012)

8. Fan, Z., Vetter, C., Guetter, C., Yu, D., Westermann, R., Kaufman, A., Xu, C.: Opti-
mized GPU implementation of learning-based non-rigid multi-modal registration. In:
Medical Imaging, pp. 69142Y–69142Y. International Society for Optics and Photonics
(2008)

9. G. Bascoy, P., Quesada-Barriuso, P., B. Heras, D., Argüello, F.: Wavelet-based multi-
component denoising profile for the classification of hyperspectral images. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing 12(2), 722–733
(2019). DOI 10.1109/JSTARS.2019.2892990

10. Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using GPU. In:
2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops, pp. 1–6. IEEE (2008)

11. Hasan, M., Jia, X., Robles-Kelly, A., Zhou, J., Pickering, M.R.: Multi-spectral remote
sensing image registration via spatial relationship analysis on SIFT keypoints. In: Geo-
science and Remote Sensing Symposium (IGARSS), 2010 IEEE International, pp. 1011–
1014. IEEE (2010)

12. Li, Q., Wang, G., Liu, J., Chen, S.: Robust scale-invariant feature matching for remote
sensing image registration. IEEE Geoscience and Remote Sensing Letters 6(2), 287–291
(2009)

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

20

GPU Accelerated Registration of Hyperspectral Images Using KAZE Features 21

13. Li, Y., Li, Q., Liu, Y., Xie, W.: A spatial-spectral sift for hyperspectral image matching
and classification. Pattern Recognition Letters (2018)

14. Lowe, A., Harrison, N., French, A.P.: Hyperspectral image analysis techniques for the
detection and classification of the early onset of plant disease and stress. Plant methods
13(1), 80 (2017)

15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International
journal of computer vision 60(2), 91–110 (2004)

16. Mehmet, F., Yardimci, Y., Temlzel, A., et al.: Registration of multispectral satellite
images with orientation-restricted sift. In: Geoscience and Remote Sensing Symposium,
2009 IEEE International, IGARSS 2009, vol. 3, pp. III–243. IEEE (2009)

17. Mukherjee, A., Velez-Reyes, M., Roysam, B.: Interest points for hyperspectral image
data. IEEE Transactions on Geoscience and Remote Sensing 47(3), 748–760 (2009)

18. Munir, M., Wilson, D.I., Yu, W., Young, B.: An evaluation of hyperspectral imaging
for characterising milk powders. Journal of food engineering 221, 1–10 (2018)

19. Muyan-Ozcelik, P., Owens, J.D., Xia, J., Samant, S.S.: Fast deformable registration on
the GPU: A CUDA implementation of demons. In: Computational Sciences and Its
Applications, 2008. ICCSA’08. International Conference on, pp. 223–233. IEEE (2008)

20. NVIDIA: CUB Library (2018). URL https://nvlabs.github.io/cub/

21. NVIDIA: cuBLAS Library User’s Guide (2019). URL https://docs.nvidia.com/pdf/

CUBLAS_Library.pdf

22. NVIDIA: CUDA C Best Practices Guide (2019). URL https://docs.nvidia.com/pdf/

CUDA_C_Best_Practices_Guide.pdf

23. NVIDIA: NVIDIA Performance Primitives (NPP) v10.1.1 User’s Guide (2019). URL
https://docs.nvidia.com/cuda/archive/10.1/npp/index.html

24. Ordóñez, Á., Argüello, F., B. Heras, D.: Alignment of hyperspectral images using KAZE
features. Remote Sensing 10(5) (2018). DOI 10.3390/rs10050756

25. Ordóñez, Á., Argüello, F., B. Heras, D.: GPU accelerated FFT-based registration of
hyperspectral scenes. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing (2017)

26. Ramkumar B.and Laber, R., Bojinov, H., Hegde, R.S.: GPU acceleration of the KAZE
image feature extraction algorithm. Journal of Real-Time Image Processing (2019)

27. Sah, S., Vanek, J., Roh, Y., Wasnik, R.: GPU accelerated real time rotation, scale and
translation invariant image registration method. In: Image Analysis and Recognition,
pp. 224–233. Springer (2012)

28. Sanders, J., Kandrot, E.: CUDA by example: an introduction to general-purpose GPU
programming. Addison-Wesley Professional (2010)

29. Shams, R., Sadeghi, P., Kennedy, R., Hartley, R.: Parallel computation of mutual in-
formation on the GPU with application to real-time registration of 3D medical images.
Computer methods and programs in biomedicine 99(2), 133–146 (2010)

30. Teke, M., Temizel, A.: Multi-spectral satellite image registration using scale-restricted
surf. In: Pattern Recognition (ICPR), 2010 20th International Conference on, pp. 2310–
2313. IEEE (2010)

31. Vince, R., More, S.S.: Hyperspectral imaging for detection of parkinson’s disease (2018).
US Patent App. 10/098,540

32. Yi, Z., Zhiguo, C., Yang, X.: Multi-spectral remote image registration based on sift.
Electronics Letters 44(2), 107–108 (2008)

33. Zhang, Y., Zhou, P., Ren, Y., Zou, Z.: GPU-accelerated large-size VHR images regis-
tration via coarse-to-fine matching. Computers & Geosciences 66, 54–65 (2014)

34. Zitova, B., Flusser, J.: Image registration methods: a survey. Image and vision comput-
ing 21(11), 977–1000 (2003)

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03214-0

21

