Skip to main content

Advertisement

Log in

Adaptive neuro-fuzzy modeling of a soft finger-like actuator for cyber-physical industrial systems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Soft robotics is a trending area of research that can revolutionize the use of robotics in industry 4.0 and cyber-physical systems including intelligent industrial systems and their interactions with the human. These robots have notable adaptability to objects and can facilitate many tasks in everyday life. One potential use of these robots is in medical applications. Due to the soft body of these robots, they are a suitable replacement for applications like rehabilitation and exoskeletons. In this paper, we present the neuro-fuzzy modeling of a soft pneumatic finger-like actuator. This actuator is a fiber-reinforced soft robot with the shape and dimensions of a real finger and moves in planar motion. A bending sensor is used as a feedback for curvature motion of this actuator. In order to model this actuator, an adaptive neuro-fuzzy inference system is utilized to overcome the hardship in the modeling of the nonlinear performance of the soft materials. An experimental setup is designed to obtain suitable input–output data needed for modeling. The results show the applicability of the utilized method in the modeling of the soft actuator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Trivedi D, Rahn CD, Kier WM, Walker ID (2008) Soft robotics: biological inspiration, state of the art, and future research. Appl Bion Biomech 5(3):99–117

    Google Scholar 

  2. Kim S, Laschi C, Trimmer B (2013) Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 31:287–294

    Google Scholar 

  3. Cho K-J, Koh J-S, Kim S, Chu W-S, Hong Y, Ahn S-H (2009) Review of manufacturing processes for soft biomimetic robots. Int J Precis Eng Manuf 10(3):171–181

    Google Scholar 

  4. Tsagarakis N, Caldwell DG (2000) Improved modelling and assessment of pneumatic muscle actuators. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 3641–3646

  5. Drotman D, Jadhav S, Karimi M, Dezonia P, Tolley T (2017) 3D printed soft actuators for a legged robot capable of navigating unstructured terrain. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp 5532–5538

  6. Rus D, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521(7553):467–475

    Google Scholar 

  7. Marchese AD, Onal CD, Rus D (2014) Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot 1(1):75–87

    Google Scholar 

  8. Bartlett NW, Tolley MT, Overvelde JT, Weaver JC, Mosadegh B, Bertoldi K, Whitesides GM, Wood RJ (2015) A 3d-printed, functionally graded soft robot powered by combustion. Science 349(6244):161–165

    Google Scholar 

  9. Tolley MT, Shepherd RF, Mosadegh B, Galloway KC, Wehner M, Karpelson M, Wood RJ, Whitesides GM (2014) A resilient, untethered soft robot. Soft Robot 1(3):213–223

    Google Scholar 

  10. Shepherd RF, Ilievski F, Choi W, Morin SA, Stokes AA, Mazzeo AD, Chen X, Wang M, Whitesides GM (2011) Multigait soft robot. Proc Natl Acad Sci 108(51):20400–20403

    Google Scholar 

  11. Jayaram K, Full RJ (2016) Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot. Proc Natl Acad Sci 113(8):E950–E957

    Google Scholar 

  12. Marchese AD, Katzschmann RK, Rus D (2015) A recipe for soft fluidic elastomer robots. Soft Robot 2(1):7–25

    Google Scholar 

  13. Tolley MT, Shepherd RF, Karpelson M, Bartlett NW, Galloway KC, Wehner M, Nunes R, Whitesides GM, Wood RJ (2014) An untethered jumping soft robot. In: 2014 IEEE/RSJ International Conference on intelligent Robots and Systems. IEEE, pp 561–566

  14. Polygerinos P, Lyne S, Wang Z, Nicolini LF, Mosadegh B, Whitesides GM, Walsh CJ (2013) Towards a soft pneumatic glove for hand rehabilitation. In: 2013 IEEE/RSJ International Conference on intelligent Robots and Systems. IEEE, pp 1512–1517

  15. Tolley MT et al (2014) A resilient, untethered soft robot. Soft Robot 1:213–223

    Google Scholar 

  16. Onal CD, Chen X, Whitesides GM, Rus D (2011) Soft mobile robots with on-board chemical pressure generation. In Proceedings of the international symposium on robotics research, pp 1–16

  17. Onal CD, Rus D (2013) Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspir Biomim 8:026003

    Google Scholar 

  18. Shepherd RF et al (2013) Using explosions to power a soft robot. Angew Chem 125:2964–2968

    Google Scholar 

  19. Park Y-L et al (2014) design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation. Bioinspir Biomim 9:016007

    Google Scholar 

  20. Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ (2014) Soft robotic glove for combined assistance and at-home rehabilitation. Robot Auton Syst 73:135–143

    Google Scholar 

  21. Subudhi B, Morris AS (2009) Soft computing methods applied to the control of a flexible robot manipulator. Appl Soft Comput 9(1):149–158

    Google Scholar 

  22. Liu CH, Chen TL, Chiu CH, Hsu MC, Chen Y, Pai TY, Peng WG, Chiang YP (2018) Optimal design of a soft robotic gripper for grasping unknown objects. Soft Robot 5(4):52–465

    Google Scholar 

  23. Ilievski Filip, Mazzeo Aaron D, Shepherd Robert F, Chen Xin, Whitesides George M (2011) Soft robotics for chemists. Angew Chem Int Ed 50(8):1890–1895

    Google Scholar 

  24. Tian Lianfang, Collins Curtis (2005) Adaptive neuro-fuzzy control of a flexible manipulator. Mechatronics 15(10):1305–1320

    Google Scholar 

  25. Rigatos Gerasimos G (2009) Model-based and model-free control of flexible-link robots: a comparison between representative methods. Appl Math Model 33(10):3906–3925

    MathSciNet  MATH  Google Scholar 

  26. O’Connor WJ (2007) Wave-based analysis and control of lump-modeled flexible robots. IEEE Trans Robot 23(1):342–352

    Google Scholar 

  27. Tian L, Collins C (2005) Adaptive neuro-fuzzy control of a flexible manipulator, mechatronics. Elsevier, Amsterdam

    Google Scholar 

  28. Wai RJ, Lee MC (2004) Intelligent optimal control of a single-link, flexible robot arm. IEEE Trans Ind Electron 51(1):201–220

    Google Scholar 

  29. Subudhi B, Morris AS (2003) Fuzzy and neuro-fuzzy approaches to control a flexible single-link manipulator. J Syst Cont Eng Proc IMechE 217:387–399

    Google Scholar 

  30. Caswara FM, Unbenhauen H (2002) A neuro-fuzzy approach to the control of a flexible-link manipulator. IEEE Trans Robot Autom 18(6):932–944

    Google Scholar 

  31. Hui D, Fuchun S, Zengqi S (2002) Observer-based adaptive controller design of flexible manipulators using time-delay neuro-fuzzy networks. J Intell Robot Syst 34(4):453–466

    MATH  Google Scholar 

  32. Jamwal PK, Hussain S, Xie SQ (2009) Dynamic modeling of pneumatic muscles using modified fuzzy inference mechanism. In: 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE

  33. Anh HP, Ahn KK (2009) Identification of pneumatic artificial muscle manipulators by a MGA-based nonlinear NARX fuzzy model. Mechatronics 19(1):106–133

    Google Scholar 

  34. Kiguchi K, Tanaka T, Fukuda T (2004) Neuro-fuzzy control of a robotic exoskeleton with emg signals. IEEE Trans Fuzzy Syst 12(4):481–490

    Google Scholar 

  35. Van Kien C, Son NN, Anh HPH (2017) Identification of 2-DOF pneumatic artificial muscle system with multilayer fuzzy logic and differential evolution algorithm. In: 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, pp 1264–1269

  36. Truong DQ, Ahn KK (2013) Synchronization controller for a 3-R planar parallel pneumatic artificial muscle (PAM) robot using modified ANFIS algorithm. Mechatronics 23(4):462–479

    Google Scholar 

  37. Tóthová M, Pitel J (2014) Reference model for hybrid adaptive control of pneumatic muscle actuator. In: 2014 IEEE 9th IEEE international symposium on applied computational intelligence and informatics (SACI). IEEE, pp 105–109

  38. Abbasi P, Nekoui MA, Zareinejad M, Abbasi P, Azhang Z (2020) Position and force control of a soft pneumatic actuator. Soft Robot. https://doi.org/10.1089/soro.2019.0065

    Article  Google Scholar 

  39. Renda Federico, Boyer Frédéric, Dias Jorge, Seneviratne Lakmal (2018) Discrete cosserat approach for multisection soft manipulator dynamics. IEEE Trans Rob 34(6):1518–1533

    Google Scholar 

  40. Goury Olivier, Duriez Christian (2018) Fast, generic, and reliable control and simulation of soft robots using model order reduction. IEEE Trans Rob 34(6):1565–1576

    Google Scholar 

  41. Keppler Manuel, Lakatos Dominic, Ott Christian, Albu-Schäffer Alin (2018) Elastic structure preserving (esp) control for compliantly actuated robots. IEEE Trans Robot 34(2):317–335

    Google Scholar 

  42. Liu Hongyi, Wang Lihui (2020) Remote human–robot collaboration: a cyber–physical system application for hazard manufacturing environment. J Manuf Syst 54:24–34

    Google Scholar 

  43. Chen Hong (2017) Applications of cyber-physical system: a literature review. J Ind Integr Manag 2(03):1750012

    Google Scholar 

  44. Dey N, Ashour AS, Shi F, Fong SJ, Tavares JM (2018) Medical cyber-physical systems: a survey. J Med Syst 42(4):74

    Google Scholar 

  45. Pereyda Christopher, Raghunath Nisha, Minor Bryan, Wilson Garrett, Schmitter-Edgecombe Maureen, Cook Diane J (2019) Cyber-physical support of daily activities: a robot/smart home partnership. ACM Trans Cyber Phys Syst 4(2):1–24

    Google Scholar 

  46. Buragohain M (2009) Adaptive network based fuzzy inference system (ANFIS) as a tool for system identification with special emphasis on training data minimization. Ph.D. diss.

  47. Jang J-SR, Sun C-T (1993) Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans Neural Netw 4(1):156–159

    Google Scholar 

  48. Yeh CY, Jeng WH, Lee SJ (2011) Data-based system modeling using a type-2 fuzzy neural network with a hybrid learning algorithm. IEEE Trans Neural Netw 22(12):2296–2309

    Google Scholar 

  49. Chaibakhsh A, Moosavian SAA, Ghaffari A (2009) Experimental fuzzy modelling and control of a steam power plant boiler. Int J Model Simul 29(4):379–386

    Google Scholar 

  50. Basri H et al (2018) Efficient routing for dense UWSNs with high-speed mobile nodes using spherical divisions. J Supercomput 74(2):696–716

    MathSciNet  Google Scholar 

  51. Basri H et al (2018) Distributed Random cooperation for VBF-based routing in high-speed dense underwater acoustic sensor networks. J Supercomput 74(11):6184–6200

    Google Scholar 

  52. Meng S et al (2020) Security-aware Dynamic scheduling for real-time optimization in cloud-based industrial applications. IEEE Trans Ind Inform

  53. Xu X et al (2020) Edge server quantification and placement for offloading social media services in industrial cognitive IoV. IEEE Trans Ind Inform

  54. Samadi S et al (2020) Reliable data aggregation in internet of ViSAR vehicles using chained dual-phase adaptive interpolation and data embedding. IEEE Intern Things J 7(4):2603–2610

    Google Scholar 

  55. Xu X et al. (2020) Intelligent offloading for collaborative smart city services in edge computing. IEEE Intern Things J

  56. Qi L et al (2019) Finding all you need: web APIs recommendation in web of things through keywords search. IEEE Trans Comput Soc Syst 6(5):1063–1072

    Google Scholar 

  57. Xu X et al (2020) Adaptive computation offloading with edge for 5G-envisioned internet of connected vehicles. IEEE Trans Intell Transp Syst

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Aslinezhad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslinezhad, M., Malekijavan, A. & Abbasi, P. Adaptive neuro-fuzzy modeling of a soft finger-like actuator for cyber-physical industrial systems. J Supercomput 77, 2624–2644 (2021). https://doi.org/10.1007/s11227-020-03370-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03370-3

Keywords

Navigation