Skip to main content
Log in

An improved algorithm based on deep learning network for road image redundancy removal

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Road detection is defined as one of the core technology of Advanced Driving Assistance System (ADAS), and this problem is important for improving the recognition accuracy and speed. Though much work has been done concerning road detection, the related questions about non-road areas are not thoroughly considered. Understanding the question is of primary importance in ADAS, we proposed an improved algorithm based on deep learning network for road image redundancy removal. Compared with the most typical road recognition methods, the experimental results show that the proposed method improves the speed of road recognition greatly, while ensuring the accuracy of road recognition to high level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fan J, Yang Z (2020) Deep residual network based road detection algorithm for remote sensing images. In: 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), 2020, pp 1723–1726. https://doi.org/10.1109/ICMCCE51767.2020.00378

  2. Wadhawan A, Kumar P (2021) Sign language recognition systems: a decade systematic literature review. Arch Comput Methods Eng 28:785–813. https://doi.org/10.1007/s11831-019-09384-2

    Article  Google Scholar 

  3. Laddha A, Kocamaz MK, Navarro-Serment LE, Hebert M (2016) Map-supervised road detection. In: 2016 IEEE intelligent vehicles symposium (IV), pp 118–123. https://doi.org/10.1109/IVS.2016.7535374

  4. Wang Q, Fang J, Yuan Y (2015) Adaptive road detection via context-aware label transfer. Neurocomputing 158(22):174–183

    Article  Google Scholar 

  5. Yuan Y, Jiang Z, Wang Q (2015) Video-based road detection via online structural learning. Neurocomputing 168(30):336–347

    Article  Google Scholar 

  6. Yu M, Liu L, Shao L (2016) Structure-preserving binary representations for RGB-D action recognition. IEEE Trans Pattern Anal Mach Intell 38(8):1651–1664. https://doi.org/10.1109/TPAMI.2015.2491925

    Article  Google Scholar 

  7. Su Y, Zhang Y, Lu T, Yang J, Kong H (2018) Vanishing point constrained lane detection with a stereo camera. IEEE Trans Intell Transp Syst 19(8):2739–2744. https://doi.org/10.1109/TITS.2017.2751746

    Article  Google Scholar 

  8. Farabet C, CouprieNajman CL, Laurent Y et al (2013) Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell 35(8):1915–1929

    Article  Google Scholar 

  9. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3431–3440. https://doi.org/10.1109/CVPR.2015.7298965

  10. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification withdeep convolutional neural networks. In: Advances in neural information processing systems. Neural information processing systems foundation, Lake Tahoe, pp 1097–1105

  11. Kim J, Lee JK, Lee KM (2016) Accurate image super-resolution using very deep convolutional networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1646–1654. https://doi.org/10.1109/CVPR.2016.182

  12. Szegedy C et al (2015) Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594

  13. Oliveira GL, Burgard W, Brox T (2016) Efficient deep models for monocular road segmentation. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 4885–4891. https://doi.org/10.1109/IROS.2016.7759717

  14. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder–decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  15. Teichmann M, Weber M, Zöllner M, Cipolla R, Urtasun R (2018) MultiNet: real-time joint semantic reasoning for autonomous driving. In: 2018 IEEE intelligent vehicles symposium (IV), pp 1013–1020. https://doi.org/10.1109/IVS.2018.8500504

  16. Saha S, Wang Z, Sadda S, Kanagasingam Y, Hu Z (2020) Visualizing and understanding inherent features in sd-oct for the progression of age-related macular degeneration using deconvolutional neural networks. Appl AI Lett 1(1):1–11

    Article  Google Scholar 

  17. Cordts M et al (2016) The cityscapes dataset for semantic urban scene understanding In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3213–3223. https://doi.org/10.1109/CVPR.2016.350

  18. Wang W, Wang N, Wu X, You S, Neumann U (2017) Self-paced cross-modality transfer learning for efficient road segmentation. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 1394–1401. https://doi.org/10.1109/ICRA.2017.7989166

  19. Chen L, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848. https://doi.org/10.1109/TPAMI.2017.2699184

    Article  Google Scholar 

  20. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  21. Cheng G, Wang Y, Xu S, Wang H, Xiang S, Pan C (2017) Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network. IEEE Trans Geosci Remote Sens 55(6):3322–3337. https://doi.org/10.1109/TGRS.2017.2669341

    Article  Google Scholar 

  22. Lee TS (1996) Image representation using 2D Gabor wavelets. IEEE Trans Pattern Anal Mach Intell 18(10):959–971. https://doi.org/10.1109/34.541406

    Article  Google Scholar 

  23. Dollár P, Zitnick CL (2013) Structured forests for fast edge detection. In: 2013 IEEE International Conference on Computer Vision, pp 1841–1848. https://doi.org/10.1109/ICCV.2013.231

  24. Muñoz-Bulnes J, Fernandez C, Parra I, Fernández-Llorca D, Sotelo MA (2017) Deep fully convolutional networks with random data augmentation for enhanced generalization in road detection. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp 366–371. https://doi.org/10.1109/ITSC.2017.8317901

  25. Han X, Lu J, Zhao C, You S, Li H (2018) Semisupervised and weakly supervised road detection based on generative adversarial networks. IEEE Signal Process Lett 25(4):551–555. https://doi.org/10.1109/LSP.2018.2809685

    Article  Google Scholar 

  26. Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp 3354–3361. https://doi.org/10.1109/CVPR.2012.6248074

  27. Alvarez JM, Gevers T, Lecun Y, et al (2012) Road scene segmentation from a single image. In: European Conference on Computer Vision. Springer, pp 376–389

  28. Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640–651. https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  29. Gao J, Wang Q, Yuan Y (2017) Embedding structured contour and location prior in siamesed fully convolutional networks for road detection. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 219–224. https://doi.org/10.1109/ICRA.2017.7989027

  30. Mohan R (2014) Deep deconvolutional networks for scene parsing. Comput Sci 76(5):1411–1418

    Google Scholar 

  31. Garnett N et al (2017) Real-time category-based and general obstacle detection for autonomous driving. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp 198–205. https://doi.org/10.1109/ICCVW.2017.32

  32. Caltagirone L, Scheidegger S, Svensson L et al (2017) Fast LIDAR-based road detection using fully convolutional neural networks. In: 2017 IEEE intelligent vehicles symposium (IV), Los Angeles. IEEE, pp 1019–1024

  33. Mendes CCT, Frémont V, Wolf DF (2016) Exploiting fully convolutional neural networks for fast road detection. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp 3174–3179. https://doi.org/10.1109/ICRA.2016.7487486

Download references

Funding

Funding was provided by GDAS’ Project of Building a World-class Research Institution in China (2020GDASYL-20200402007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Wang, H. & Chen, Q. An improved algorithm based on deep learning network for road image redundancy removal. J Supercomput 78, 10385–10404 (2022). https://doi.org/10.1007/s11227-021-04302-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-04302-5

Keywords

Navigation