Skip to main content
Log in

Dynamic opposite learning enhanced artificial ecosystem optimizer for IIR system identification

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The contrive principle of the adaptive infinite impulse response (IIR) filter is to find the filter parameters based on the error function, thus obtaining the best model of the unbeknown plant. Since the error function has a multimodal error surface, it is challenging to get the ideal identification result by traditional methods. In this work, a modified artificial ecosystem optimizer based on the novel dynamic opposite learning (DOL) strategy and a well-designed nonlinear adaptive weight coefficient, called the DAEO, is proposed to minimize the error function. The DOL adopted a random model to dynamically generate the asymmetric opposite solutions of the current population for generation jumping and population formation. To obtain more chances to find the optimal parametric solution, the DAEO is formed from two phases: The first phase produces the initial population by adopting DOL strategy, and the second phase is that DOL is employed as an extra phase to renew the AEO population in each iteration. The asymmetric search area of DOL holistically enhances the exploitation ability of DAEO, and the dynamically changing feature increases the diversity of the swarm, improving the exploration capability of the algorithm. Meanwhile, introducing the well-designed nonlinear adaptive weight coefficient makes search agents explore search space adaptively and poises exploration and exploitation phases. The classical set of benchmark problems is employed to test the performance of DAEO. The experimental results indicate that DAEO ranked first in terms of mean and variance values compared with other algorithms, except f13. Furthermore, the DAEO algorithm is also applied to the IIR system identification problem. Simulation results on five benchmarked IIR systems show DAEO outperforms the comparison approach in improving the accuracy of recognition results and can obtain the minimum values of 0 and 1.69E-05 for mean square error (MSE) in the same-order and reduced-order system, respectively, which proves that DAEO is effective and valuable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Zarai K, Cherif A (2021) Adaptive filter based on Monte Carlo method to improve the non-linear target tracking in the radar system. Aerosp Syst 4:67–74. https://doi.org/10.1007/s42401-020-00080-9

    Article  Google Scholar 

  2. Li W, Xiang Z, Ren P, Li Q (2021) Adaptive filter bank multi-carrier waveform design for joint communication-radar system. Digit Sign Proc 110:102950. https://doi.org/10.1016/j.dsp.2020.102950

    Article  Google Scholar 

  3. Milosavljevic MS, Corron NJ, Blakely JN (2020) Optimal communications with infinite impulse response matched filters. Chaos, Solitons Fractals 138:109822. https://doi.org/10.1016/j.chaos.2020.109822

    Article  MathSciNet  MATH  Google Scholar 

  4. Le Cong D, Zhang J, Pang Y (2021) A novel pipelined neural FIR architecture for nonlinear adaptive filter. Neurocomputing 440:220–229. https://doi.org/10.1016/j.neucom.2020.11.036

    Article  Google Scholar 

  5. Samalla DK, SubbaRao SPV, Mallikarjuna Rao G, Jagadeesh BN (2021) Design and development of adaptive filter for real time signal processing. IOP Conf Ser: Mater Sci Eng 1074:012036. https://doi.org/10.1088/1757-899X/1074/1/012036

    Article  Google Scholar 

  6. Zhang Q, Zhao L, Zhao L (2021) A two-step robust adaptive filtering algorithm for GNSS kinematic precise point positioning. Chin J Aeronaut. https://doi.org/10.1016/j.cja.2020.10.033

    Article  Google Scholar 

  7. Chandra M (2021) Design and analysis of improved high-speed adaptive filter architectures for ECG signal denoising. Biomed Sign Proc Control. https://doi.org/10.1016/j.bspc.2020

    Article  Google Scholar 

  8. Eltrass AS, Ghanem NH (2021) A new automated multi-stage system of non-local means and multi-kernel adaptive filtering techniques for EEG noise and artifacts suppression. J Neural Eng 18:036023. https://doi.org/10.1088/1741-2552/abe397

    Article  Google Scholar 

  9. Nagasirisha B, Prasad VVKDV (2021) EMG SIGNAL DENOISING USING ADAPTIVE FILTERS THROUGH HYBRID OPTIMIZATION ALGORITHMS. Biomed Eng Appl Basis Commun 33:2150009. https://doi.org/10.4015/S1016237221500095

    Article  Google Scholar 

  10. Czapiewska A, Luksza A, Studanski R, Zak A (2020) Application of Diversity combining with RLS adaptive filtering in data transmission in a hydroacoustic channel. Sensors 20:7255. https://doi.org/10.3390/s20247255

    Article  Google Scholar 

  11. Mohammadi A, Zahiri SH, Razavi SM (2019) Infinite impulse response systems modeling by artificial intelligent optimization methods. Evol Syst. https://doi.org/10.1007/s12530-018-9218-z

    Article  Google Scholar 

  12. Kumar M, Aggarwal A, Rawat TK (2016) Bat algorithm: application to adaptive infinite impulse response system identification. Arab J Sci Eng 41:3587–3604. https://doi.org/10.1007/s13369-016-2222-3

    Article  Google Scholar 

  13. Luo Q, Ling Y, Zhou Y (2020) Modified Whale Optimization Algorithm for Infinitive Impulse Response System Identification. Arab J Sci Eng 45:2163–2176. https://doi.org/10.1007/s13369-019-04093-1

    Article  Google Scholar 

  14. Yao L, Sethares WA (1994) Nonlinear parameter estimation via the genetic algorithm. IEEE Trans Signal Process 42:927–935. https://doi.org/10.1109/78.285655

    Article  Google Scholar 

  15. Krusienski DJ, Jenkins WK (2004) Particle swarm optimization for adaptive IIR filter structures. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753). IEEE, Portland, OR, USA, pp 965–970

  16. Panda G, Pradhan PM, Majhi B (2011) IIR system identification using cat swarm optimization. Expert Syst Appl 38:12671–12683. https://doi.org/10.1016/j.eswa.2011.04.054

    Article  Google Scholar 

  17. Mondal S, Ghoshal SP, Kar R, Mandal D (2012) Differential evolution with wavelet mutation in digital finite impulse response filter design. J Optim Theory Appl 155:315–324. https://doi.org/10.1007/s10957-012-0028-3

    Article  MathSciNet  MATH  Google Scholar 

  18. Saha SK, Kar R, Mandal D et al (2013) A new design method using opposition-based BAT algorithm for IIR system identification problem. IJBIC 5:99. https://doi.org/10.1504/IJBIC.2013.053508

    Article  Google Scholar 

  19. Upadhyay P, Kar R, Mandal D et al (2014) A novel design method for optimal IIR system identification using opposition based harmony search algorithm. J Franklin Inst 351:2454–2488. https://doi.org/10.1016/j.jfranklin.2014.01.001

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang S, Wang Y, Ji Z (2015) A new design method for adaptive IIR system identification using hybrid particle swarm optimization and gravitational search algorithm. Nonlinear Dyn 79:2553–2576. https://doi.org/10.1007/s11071-014-1832-0

    Article  MathSciNet  Google Scholar 

  21. Lagos-Eulogio P, Seck-Tuoh-Mora JC, Hernandez-Romero N, Medina-Marin J (2017) A new design method for adaptive IIR system identification using hybrid CPSO and DE. Nonlinear Dyn 88:2371–2389. https://doi.org/10.1007/s11071-017-3383-7

    Article  Google Scholar 

  22. Kumar M, Rawat TK, Aggarwal A (2017) Adaptive infinite impulse response system identification using modified-interior search algorithm with Lèvy flight. ISA Trans 67:266–279. https://doi.org/10.1016/j.isatra.2016.10.018

    Article  Google Scholar 

  23. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Computat 1:67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  24. Zhao W, Wang L, Zhang Z (2020) Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Comput & Applic 32:9383–9425. https://doi.org/10.1007/s00521-019-04452-x

    Article  Google Scholar 

  25. Yang Y, Yang B, Niu M (2018) Adaptive infinite impulse response system identification using opposition based hybrid coral reefs optimization algorithm. Appl Intell 48:1689–1706. https://doi.org/10.1007/s10489-017-1034-9

    Article  Google Scholar 

  26. Durmuş B (2022) Infinite impulse response system identification using average differential evolution algorithm with local search. Neural Comput Appl 34:375–390. https://doi.org/10.1007/s00521-021-06399-4

    Article  Google Scholar 

  27. Sahlol AT, Abd Elaziz M, Tariq Jamal A et al (2020) A novel method for detection of tuberculosis in chest radiographs using artificial ecosystem-based optimisation of deep neural network features. Symmetry 12:1146. https://doi.org/10.3390/sym12071146

    Article  Google Scholar 

  28. Mouassa S, Jurado F, Bouktir T, Raja MAZ (2020) Novel design of artificial ecosystem optimizer for large-scale optimal reactive power dispatch problem with application to Algerian electricity grid. Neural Comput & Applic. https://doi.org/10.1007/s00521-020-05496-0

    Article  Google Scholar 

  29. Essa FA (2020) Prediction of power consumption and water productivity of seawater greenhouse system using random vector functional link network integrated with artificial ecosystem-based optimization. Process Safety Environ Prot. https://doi.org/10.1016/j.psep.2020.07.044

    Article  Google Scholar 

  30. Tubishat M, Idris N, Shuib L et al (2020) Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Syst Appl 145:113122. https://doi.org/10.1016/j.eswa.2019.113122

    Article  Google Scholar 

  31. Ewees AA, Abd Elaziz M, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156–172. https://doi.org/10.1016/j.eswa.2018.06.023

    Article  Google Scholar 

  32. Gupta S (2020) Opposition-based learning Harris hawks optimization with advanced transition rules: principles and analysis. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.113510

    Article  Google Scholar 

  33. Xu Y, Yang Z, Li X et al (2020) Dynamic opposite learning enhanced teaching–learning-based optimization. Knowl-Based Syst 188:104966. https://doi.org/10.1016/j.knosys.2019.104966

    Article  Google Scholar 

  34. Han X, Yue L, Dong Y et al (2020) Efficient hybrid algorithm based on moth search and fireworks algorithm for solving numerical and constrained engineering optimization problems. J Supercomput 76:9404–9429. https://doi.org/10.1007/s11227-020-03212-2

    Article  Google Scholar 

  35. Goldanloo MJ, Gharehchopogh FS (2021) A hybrid OBL-based firefly algorithm with symbiotic organisms search algorithm for solving continuous optimization problems. J Supercomput. https://doi.org/10.1007/s11227-021-04015-9

    Article  Google Scholar 

  36. Tang C, Zhou Y, Tang Z, Luo Q (2021) Teaching-learning-based pathfinder algorithm for function and engineering optimization problems. Appl Intell. https://doi.org/10.1007/s10489-020-02071-x

    Article  Google Scholar 

  37. Wang Z, Luo Q, Zhou Y (2020) Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems. Eng Comput. https://doi.org/10.1007/s00366-020-01025-8

    Article  Google Scholar 

  38. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  39. Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  40. Mirjalili S, Hashim SZM (2010) A new hybrid PSOGSA algorithm for function optimization. In: 2010 International conference on computer and information application. IEEE, Tianjin, China, pp 374–377

  41. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  42. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  43. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  44. Zhang S, Zhou Y (2018) Grey Wolf Optimizer with Ranking-Based Mutation Operator for IIR Model Identification. Chinese J Electron 27:1071

    Article  Google Scholar 

  45. Ling Y, Zhou Y, Luo Q (2017) Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access 5:6168–6186. https://doi.org/10.1109/ACCESS.2017.2695498

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China, Key Technology Research and Platform Development for Cloud Manufacturing Based on Open Architecture under Grant No.: 2018YFB1702700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Yan, X., Wang, Y. et al. Dynamic opposite learning enhanced artificial ecosystem optimizer for IIR system identification. J Supercomput 78, 13040–13085 (2022). https://doi.org/10.1007/s11227-022-04367-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04367-w

Keyword

Navigation