Skip to main content
Log in

Multi-context unsupervised domain adaption for HEp-2 cell classification using maximum partial classifier discrepancy

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Identifying human epithelial-2 (HEp-2) cells in indirect immune fluorescence (IIF) is the most commonly used method for the diagnosis of autoimmune diseases. Although supervised deep learning networks have made remarkable progress on HEp-2 cell staining pattern classification, the high-performance relies on a large amount of labeled training data. Unfortunately, large-scale labeled datasets are scarce due to the expensive costs of labeling medical images. Therefore, we propose an unsupervised domain adaption (UDA) model, namely MDA-MPCD, to classify unlabeled HEp-2 cell samples. The proposed model involves two major aspects: (a) multi-context domain adaption (MDA) generator and (b) maximum partial classifier discrepancy (MPCD) architecture. The MDA generator can extract multi-context features from complex cell images while providing more comprehensive and diverse information for the classifier. The MPCD architecture, utilizing the mapping variation of feature transfer, focuses on the discrepancy from the cross-domain gap by separating the activations in the classifier. The proposed model dominates all comparison methods during evaluation, achieving 85.35% and 96.08% mean accuracy on two UDA tasks, respectively. Furthermore, the model is demonstrated to adapt from rich label domain to unlabeled domain by detailed ablation experiments and visualization results. The proposed MDA-MPCD has potential as a clinical scheme, enabling effective and accurate classification of HEp-2 cell staining pattern without labeling the target data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Download link: https://hep2.unisa.it/dbtools.html.

  2. Download link: https://mivia.unisa.it/contest-hep-2/.

References

  1. Rahman S, Wang L, Sun C, Zhou L (2020) Deep learning based HEp-2 image classification: a comprehensive review. Med Image Anal. https://doi.org/10.1016/j.media.2020.101764

    Article  Google Scholar 

  2. Kavanaugh A, Tomar R, Reveille J, Solomon DH, Homburger HA (2000) Guidelines for clinical use of the antinuclear antibody test and tests for specific autoantibodies to nuclear antigens. Arch Pathol Lab Med 124:71–81. https://doi.org/10.5858/2000-124-0071-GFCUOT

    Article  Google Scholar 

  3. Bayramoglu N, Kannala J, Heikkilä J (2015) Human epithelial type 2 cell classification with convolutional neural networks. In: 2015 IEEE 15th International Conferences Bioinformatics-Bioengineering BIBE, pp 0–5. https://doi.org/10.1109/BIBE.2015.7367705

  4. Rodrigues LF, Naldi MC, Mari JF (2020) Comparing convolutional neural networks and preprocessing techniques for HEp-2 cell classification in immunofluorescence images. Comput Biol Med 116:103542. https://doi.org/10.1016/j.compbiomed.2019.103542

    Article  Google Scholar 

  5. Ahn E, Kumar A, Fulham M, Feng D, Kim J (2020) Unsupervised domain adaptation to classify medical images using zero-bias convolutional auto-encoders and context-based feature augmentation. IEEE Trans Med Imaging 39:2385–2394. https://doi.org/10.1109/TMI.2020.2971258

    Article  Google Scholar 

  6. Phan HTH, Kumar A, Kim J, Feng D (2016) Transfer learning of a convolutional neural network for HEp-2 cell image classification. Proc Int Symp Biomed Imaging 2:1208–1211. https://doi.org/10.1109/ISBI.2016.7493483

    Article  Google Scholar 

  7. Li H, Zheng W-S, Zhang J (2016) Deep CNNs for HEp-2 cells classification : a cross-specimen analysis. http://arxiv.org/abs/1604.05816

  8. Shen L, Jia X, Li Y (2018) Deep cross residual network for HEp-2 cell staining pattern classification. Pattern Recognit 82:68–78. https://doi.org/10.1016/j.patcog.2018.05.005

    Article  Google Scholar 

  9. Lei H, Han T, Zhou F, Yu Z, Qin J, Elazab A, Lei B (2018) A deeply supervised residual network for HEp-2 cell classification via cross-modal transfer learning. Pattern Recognit 79:290–302. https://doi.org/10.1016/j.patcog.2018.02.006

    Article  Google Scholar 

  10. Foggia P, Percannella G, Soda P, Vento M (2013) Benchmarking HEp-2 cells classification methods. IEEE Trans Med Imaging 32:1878–1889. https://doi.org/10.1109/TMI.2013.2268163

    Article  Google Scholar 

  11. Wu S, Wang F, Huang J, Yin B, Huang M, Wei W, Zhang M, Ouyang R (2019) Evaluation of the automated indirect immunofluorescence test for anti-dsDNA antibodies. Clin Chim Acta 498:143–147. https://doi.org/10.1016/j.cca.2019.08.018

    Article  Google Scholar 

  12. Hobson P, Lovell BC, Percannella G, Vento M, Wiliem A (2015) Benchmarking human epithelial type 2 interphase cells classification methods on a very large dataset. Artif Intell Med 65:239–250. https://doi.org/10.1016/j.artmed.2015.08.001

    Article  Google Scholar 

  13. Rigon A, Soda P, Zennaro D, Iannello G, Afeltra A (2007) Indirect immunofluorescence in autoimmune diseases: assessment of digital images for diagnostic purpose. Cytom Part B Clin Cytom 72:472–477. https://doi.org/10.1002/cyto.b.20356

    Article  Google Scholar 

  14. Hu B, Tang Y, Chang EIC, Fan Y, Lai M, Xu Y (2019) Unsupervised learning for cell-level visual representation in histopathology images with generative adversarial networks. IEEE J Biomed Heal Inform 23:1316–1328. https://doi.org/10.1109/JBHI.2018.2852639

    Article  Google Scholar 

  15. Zhang Y, Niu S, Qiu Z, Wei Y, Zhao P, Yao J, Huang J, Wu Q, Tan M (2020) COVID-DA: deep domain adaptation from typical pneumonia to COVID-19, vol XX, pp 1–8. http://arxiv.org/abs/2005.01577

  16. Guan H, Liu M (2021) Domain adaptation for medical image analysis: a survey. Science. 5:1–15

    Google Scholar 

  17. Bousmalis K, Trigeorgis G, Silberman N, Krishnan D, Erhan D (2016) Domain separation networks. Adv Neural Inf Process Syst 2:343–351

    Google Scholar 

  18. Tzeng E, Hoffman J, Saenko K, Darrell T (2017) Adversarial discriminative domain adaptation. In: 2017 IEEE Conference Computing Vision and Pattern Recognition, IEEE, pp 2962–2971. https://doi.org/10.1109/CVPR.2017.316

  19. Laradji IH, Babanezhad R (2020) M-ADDA: unsupervised domain adaptation with deep metric learning. Domain Adapt Vis Underst 2:17–31. https://doi.org/10.1007/978-3-030-30671-7_2

    Article  Google Scholar 

  20. Saito K, Watanabe K, Ushiku Y, Harada T (2018) Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 3723–3732. https://doi.org/10.1109/CVPR.2018.00392

  21. Lovell BC, Percannella G, Vento M, Wiliem A (2014) Performance evaluation of indirect immunofluorescence image. Anal Syst 2:1–25

    Google Scholar 

  22. Yu F, Koltun V (2016) Multi-scale context aggregation by dilated convolutions. In: 4th International Conference on Learning Representations, ICLR 2016-Conference Track Proceedings

  23. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016-Decem, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  24. Gao Z, Wang L, Zhou L, Zhang J (2017) HEp-2 cell image classification with deep convolutional neural networks. IEEE J Biomed Heal Inform 21:416–428. https://doi.org/10.1109/JBHI.2016.2526603

    Article  Google Scholar 

  25. Li Y, Shen L (2019) HEp-Net: a smaller and better deep-learning network for HEp-2 cell classification. Comput Methods Biomech Biomed Eng Imaging Vis 7:266–272. https://doi.org/10.1080/21681163.2018.1449140

    Article  Google Scholar 

  26. Li Y, Shen L, Yu S (2017) HEp-2 specimen image segmentation and classification using very deep fully convolutional network. IEEE Trans Med Imaging 36:1561–1572. https://doi.org/10.1109/TMI.2017.2672702

    Article  Google Scholar 

  27. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359. https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  28. Long M, Zhu H, Wang J, Jordan MI (2017) Deep transfer learning with joint adaptation networks. 34th Int Conf Mach Learn ICML 2017(5):3470–3479

    Google Scholar 

  29. Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q (2021) A comprehensive survey on transfer learning. Proc IEEE 109:43–76. https://doi.org/10.1109/JPROC.2020.3004555

    Article  Google Scholar 

  30. Ohata EF, Chagas JVS, Bezerra GM, Hassan MM, Albuquerque VHC, Filho PPR (2021) A novel transfer learning approach for the classification of histological images of colorectal cancer. J Supercomput 77:9494–9519. https://doi.org/10.1007/s11227-020-03575-6

    Article  Google Scholar 

  31. Vununu C, Lee S-H, Kwon K-R (2021) A classification method for the cellular images based on active learning and cross-modal transfer learning. Sensors 21:1469. https://doi.org/10.3390/s21041469

    Article  Google Scholar 

  32. Zhang Y, Wei Y, Wu Q, Zhao P, Niu S, Huang J, Tan M (2020) Collaborative unsupervised domain adaptation for medical image diagnosis. IEEE Trans Image Process 29:7834–7844. https://doi.org/10.1109/TIP.2020.3006377

    Article  Google Scholar 

  33. Zhuang J, Chen Z, Zhang J, Zhang D, Cai Z (2019) Domain adaptation for retinal vessel segmentation using asymmetrical maximum classifier discrepancy. ACM Int Conf Proc Ser. https://doi.org/10.1145/3321408.3322627

    Article  Google Scholar 

  34. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: IEEE Access, pp 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

  35. Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? Adv Neural Inf Process Syst 4:3320–3328

    Google Scholar 

  36. Xu R, Li G, Yang J, Lin L (2019) Larger norm more transferable: an adaptive feature norm approach for unsupervised domain adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1426–1435. https://doi.org/10.1109/ICCV.2019.00151

  37. Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45:427–437. https://doi.org/10.1016/j.ipm.2009.03.002

    Article  Google Scholar 

  38. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86:2278–2323. https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  39. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations ICLR 2015-Conference Track Proceedings, pp 1–14

  40. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016-Decem, pp 2818–2826. https://doi.org/10.1109/CVPR.2016.308

  41. Nguyen LD, Gao R, Lin D, Lin Z (2019) Biomedical image classification based on a feature concatenation and ensemble of deep CNNs. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-019-01276-4

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Fundamental Research Funds for the Central Universities under Grant No. N181706001, N2017009, N2017008, N182608003 and N181703005, National Natural Science Foundation of China under Grant No.61902057 and Joint Fund of Science and Technology Department of Liaoning Province and State Key Laboratory of Robotics China under Grant No. 2020-KF-12-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Ren, T., Wang, C. et al. Multi-context unsupervised domain adaption for HEp-2 cell classification using maximum partial classifier discrepancy. J Supercomput 78, 14362–14380 (2022). https://doi.org/10.1007/s11227-022-04452-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04452-0

Keywords

Navigation