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Abstract
Metaverse, which is anticipated to be the future of the internet, is a 3D virtual world 
in which users interact via highly customizable computer avatars. It is considerably 
promising for several industries, including gaming, education, and business. How-
ever, it still has drawbacks, particularly in the privacy and identity threads. When 
a person joins the metaverse via a virtual reality (VR) human-robot equipment, 
their avatar, digital assets, and private information may be compromised by cyber-
criminals. This paper introduces a specific Finger Vein Recognition approach for 
the virtual reality (VR) human-robot equipment of the metaverse of the Metaverse 
to prevent others from misappropriating it. Finger vein is a is a biometric feature 
hidden beneath our skin. It is considerably more secure in person verification than 
other hand-based biometric characteristics such as finger print and palm print since 
it is difficult to imitate. Most conventional finger vein recognition systems that use 
hand-crafted features are ineffective, especially for images with low quality, low 
contrast, scale variation, translation, and rotation. Deep learning methods have been 
demonstrated to be more successful than traditional methods in computer vision. 
This paper develops a finger vein recognition system based on a convolution neural 
network and anti-aliasing technique. We employ/ utilize a contrast image enhance-
ment algorithm in the preprocessing step to improve performance of the system. 
The proposed approach is evaluated on three publicly available finger vein datasets. 
Experimental results show that our proposed method outperforms the current state-
of-the-art methods, improvement of 97.66% accuracy on FVUSM dataset, 99.94% 
accuracy on SDUMLA dataset, and 88.19% accuracy on THUFV2 dataset.
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1 Introduction

 Metaverse is a 3D virtual world of online social networking and a persistent and 
decentralized 3D virtual environment. It relates to a collection of technological 
devices that are related to the Internet of Things (IoT), blockchain, artificial intel-
ligence (AI), and many other areas. Data in a metaverse has a special identifica-
tion tag and can be used as traceable data in a blockchain-based system system. 
It provides a useful resource for artificial intelligence [1]. Users may access the 
metaverse virtual space through virtual reality glasses, augmented reality glasses, 
mobile phones, personal computers, and video gaming consoles. Despite demon-
strating a promising future in the business, education, retail, and real estate indus-
tries, the metaverse is restricted by the technical limitations of hardware devices, 
the necessity for sensors to interact with a real-time virtual world, information 
privacy problems, and user addiction.

 Dionisio, J.D. (2013) [2]discuss the transition from a collection of isolated vir-
tual worlds to an integrated network of 3D virtual worlds, or a metaverse. Four 
important factors are considered to define success in attempt advancement of a fully 
functioning metaverse: realism (the user’s realistic psychological and emotional 
experience in the metaverse), ubiquity (the accessibility of current digital devices 
and the preservation of the user’s virtual identity), interoperability (the synchronic-
ity and continuity of digital assets and user movement), and scalability (the system 
efficiently when a large number of users are active/online in the metaverse). Beside 
the difficulties of its concept and technology, the development of the metaverse may 
be hampered by substantial economic and political restrictions [ 2 ].

In addition to theoretical and evolutionary study of metaverse, different inves-
tigation also focus on practical applications based on the metaverse platform. For 
examples, due to the demands of Covid 19’s disease prevention criteria, more 
people prefer the disease consultations to be conducted virtually rather than in 
person.  Han et  al. [3]  develop a realistic virtual area for diagnosis and therapy 
based on the metaverse platform. This research concentrates on strengthening the 
patient’s comfort throughout online diagnosis and therapy. The Physically Based 
Rendering (PBR) is used for simulating a virtual environment that resembles the 
real world. It contributes to enhancing the user experience in the virtual world.

Second Life, a free 3D virtual world where users can interact and communicate 
in real-time, serves as the initial version of the metaverse. However, a novel con-
cept of the metaverse is necessarily suggested due to the innovation of social net-
works.  Park et al. [4] identifies three areas where a new metaverse differs from 
the previous one: hardware (headset device, GPU memory, network), software 
(development of the identification and expression model that takes advantage of 
the hardware’s parallelism), and contents (the availability of content that people 
and participate in Metaverse). The authors also offer a thorough analysis of the 
software and technologies that might provide social meaning in a metaverse in 
three different approaches: user interaction, implementation, and application.    
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Lee et  al. [5]  introduce a brain-to-speech (BTS) system for smart communi-
cation utilizing brain signals in the real world. The research reveals a potential 
future use of brain-computer interfaces in the Metaverse system: speech-based 
smart home control via discussion with a virtual assistant.

The metaverse demonstrates that it is a virtual environment with promising con-
tributions in which people will interact, share information, and participate in activi-
ties with one another using digital avatars. However, this new form of communica-
tion raises a number of privacy and security problems, particularly cyber threats, 
fraud, and identity theft, which poses a threat to the digital world. As a result, devel-
oping a convenient and reliable identity verification system to protect our 3D gadg-
ets and identities in the metaverse from identity theft is challenging. One way to 
protect users from fraud or device theft is to utilize biometric identification tech-
nologies. Biometrics utilizes a registered person’s unique traits, such as fingerprints 
or iris scans, to verify the real identity of a login attempt and grant access to a user’s 
account. Kuo Wang and Ajay Kumar [6] use iris recognition to verify user identifi-
cation in metaverse. The author addresses significant constraints of existing technol-
ogies for off-angle iris identification from closer distances utilizing head-mounted 
devices and obtaining state-of-the-art iris recognition. Similar to the iris, every indi-
vidual’s finger veins are unique. Because of the internal nature of the finger vein, 
it is difficult to copy or forge. Veins exist only in live humans and their patterns 
are unique and do not change throughout life. The vein patterns can be captured 
using illumination of near infrared light with no touching required. Compared to tra-
ditional authentication systems such as password or swipe card, biometric systems 
(e.g., face recognition [7], iris recognition [8], finger vein recognition [9], etc.) are 
considered to be more secure. This study suggests a specific finger vein recognition 
for the virtual reality (VR) human-robot equipment of the metaverse in an effort to 
prevent misappropriation of the VR human-robot technology.

In conventional approaches, finger vein recognition systems include two stages: 
finger vein pattern extraction and identification. The former detects finger vein pat-
tern from an input image, while the latter identifies vein identity. Repeated line 
tracking [9], maximum curvature [10], and wide line detector [11] are three early 
algorithms for extracting finger vein patterns. These algorithms detect vein patterns 
based on the cross sectional profile of the finger vein, where a vein appears darker 
than the surrounding region. The Repeated line tracking algorithm employs random 
initial positions and repeated tracking of vein lines in images, while the maximum 
curvature method determines vein pattern by locating local maximum curvatures 
in cross sectional profiles of finger veins. On the contrary, the Wide line detector 
technique can detect the vein line’s width instead of detecting the vein line’s center. 
After extracting the vein pattern, the finger vein image is identified by comparing 
the vein pattern with all the vein patterns in the database using a pattern matching 
algorithm such as structural matching [12] or template matching [13].   However, the 
aforementioned systems for finger vein recognition have certain drawbacks, such as 
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being difficult to build as an end-to-end system and image quality sensitive (images 
with low quality, low contrast, or variations in scaling, translation, and rotation). 

Deep learning has demonstrated success in a variety of applications, including 
natural language processing  [14], speech recognition  [15], and object detection 
[16] . It also produced an impressive result in the field of biometric recognition [17], 
particularly on a finger veins recognition system. For example, the studies in  [18] 
and [19]   use Alex Net and VGG 16 architecture for finger vein recognition and 
achieve better results than the traditional algorithms. FV-GAN model, a Generative 
Adversarial Network (GAN) model for finger vein based on Cycle-GAN architec-
ture, is introduced in  [20] to overcome the low quality image problem and insuf-
ficient data.  The authors in [21] suggests a fully convolutional neural network, an 
extension of U-Net, and an embedded conditional random field as an end-to-end 
system for pixel-wise finger vein segmentation, and achieves effective performance 
in vein pattern segmentation results. R.S. Kuze et al. [22] have recently proposed a 
novel CNN model that modifies Densenet-161 architecture by integrating a custom 
embedder module to the backbone model and achieves state-of-the-art results on 
publicly available finger vein datasets.

The studies on finger vein recognition based on deep learning algorithms showed 
promising results for the problem. However, the existing methods still do not cope 
well with the insufficient data. In this study, we develop a CNN-based finger vein 
recognition method using the pretrained model for addressing this problem. Our sys-
tem integrates the blur pool layer into the pretrained model to improve the model 
performance, especially for data suffering from rotation or translations, which 
causes the shift variance problem. In addition, we apply dual exposure fusion algo-
rithm  [23], a preprocessing process that combines eye exposure adjustment and 
brain exposure adjustment, to enhance the image contrast and thus increase the rec-
ognition accuracy. Our proposed model is evaluated on three public finger vein data-
sets and the results are compared with the state of the art model.

The rest of the paper is organized as follows. Section 2 describes the proposed 
method for finger vein recognition. Section  3 introduce the hardware device. The 
experimental results are discussed in Sect. 4. Finally, the conclusions and remarks 
are given in Sect. 5.

2  The proposed method

2.1  Proposed system architecture

The finger vein recognition proposed in this study for determining vein identity 
includes three phases namely the training phase (Fig. 1a), the registration phase 
(Fig. 1b), and the recognition phase (Fig. 1c). First, in the training phase, a pre-
trained CNN model and a finger vein dataset are used to build a deep learning 
model, which is then used as a finger vein feature extractor. Then, the registration 
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phase accepts the enrolled finger vein images and uses the deep learning model 
built in the training phase to extract the vein features. The extracted feature vec-
tors are then stored in an enrolled finger vein database. Finally, the recognition 
phase aims to recognize the vein identity of the input finger vein image. The fea-
tures of the input image are extracted and compared with the features of the regis-
tered finger veins based on the Euclidean distance.

Fig. 1  Proposed finger vein recognition system a Train phase; b Registration phase; c Recognition phase



2772 N. C. Tran et al.

1 3

This section focuses on preprocessing techniques, anti-aliasing convolution neu-
ral networks to extract the embedding vector, and loss function.

2.2  Preprocessing

In the acquisition step, finger vein images taken with infrared light are usually sen-
sitive to ambient illumination. These images can be underexposed or overexposed, 
resulting in poor recognition performance. Therefore, it is necessary to apply image 
processing techniques for enhancing image quality to improve recognition perfor-
mance. We propose to use a dual exposure fusion algorithm [23]   to enhance the 
contrast of input finger vein images before using these images for training, registra-
tion, and recognition tasks. This algorithm has been shown to be a powerful tech-
nique for enhancing images in low light conditions, which may help to achieve bet-
ter results in recognition tasks. The contrast enhancement process in this algorithm 
involves two stages. The eye exposure adjustment stage generates a multi-exposure 
image set, and the brain exposure adjustment stage fuses the generated image set 
into the final enhancement image. Figure 2 shows the resulting image after applying 
this contrast enhancement algorithm.

2.3  Anti‑aliasing convolutional neural network

Convolutional neural networks extract output feature maps from input images for the 
classification tasks. Shifting features’ position in input images can result in different 
output feature maps. Pooling layers provide an approach to down sampling feature 
maps to reduce the sensitivity of features’ position. However, the variance problem 
still remains due to the down sampling process. For example, a pooling layer with 
stride 2 can correctly extract even pixel shifting while it is incorrect for odd pixel 
shifting. Thus, if shifting the input affects the output feature map, the CNN model 

Fig. 2  Image contrast enhancement using Exposure Fusion Framework
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is a shift variance. Otherwise, the CNN model is shift invariance. Equations 1 and 2 
show the cases of shift variance and shift invariance, respectively [24].

where X ∈ ℝ
H×W×3 represents input image. Theeature map extracted by CNN model 

is F(X) ∈ ℝ
Hi×Wi×Ci , with spatial resolution Hi ×Wi and Ci channels. The origi-

nal resoon F̃(X) ∈ ℝ
H×W×Ci is up-sampled by the feature map. Δh,Δw are shifting 

distance.
To improve the shift equivariance, we use the blur pool layer in a convolution 

neural network to make it shift-invariance [24]. Blur pool layers replace the original 
pooling layers to blur the input feature before the down sampling step, and thereby 
minimize the influence of the shift of the input feature. The technique of blurring 
an image in order to smooth out the detail is also known as "anti-aliasing," thus we 
refer to it as an anti-aliasing convolutional neural network. The proposed model is 
constructed in two main steps. In the first step, the Max Pool layer (stride 2) in the 
original model is replaced by the Max Blur Pool block, which consists of the Max 
Pool layer (stride 1) and the Blur Pool layer (stride 2) (Eq. 3).

In the second step, the Blur Pool layer (stride 2) replaces the Average Pool layer 
(stride 2) in original model (Eq. 4).

2.4  Loss function

In our system, the CNN model is used to extract embedding vectors from input 
images for the classification tasks. The model needs to minimize the intra-class 
distance as well as maximize the interclass distance. For this reason, the Additive 
Angular Margin Penalty (AAMP) [25] is used instead of the soft max loss because it 
gives better results in feature extraction. The formula is shown in Eq. 5.

where xi ∈ ℝ
d is deep feature of the i-th sample that belongs to the yi-th class. The 

d is dimension embedding feature. Wj ∈ ℝ
d represent the j-th column of the weight 

W ∈ ℝ
d and bj ∈ ℝ

d represent the bias term. B and U are the batch size and class 
number, respectively. The scaling factor and the penalty margin are represented by 
hyper parameters s and m. B is batch size (the value is 8), U is the class number (it 
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depends on the dataset, for example, its value is 305 for THUFV2 dataset, 318 for 
SDUMLA dataset, and 246 for FV-USM dataset), the s value is 30.0, and the m 
value is 0.50.

3  Hardware device

There are several ways to enter the metaverse, including computers and mobile 
phones. However, these gadgets do not produce the same level of interactivity as 
realistic metaverse devices. Virtual reality equipment (Google, Samsung, HTC Vive, 
etc.) is the most immersive method. In this part, we describe the via a virtual real-
ity (VR) human-robot equipment (HTC Vive) for accessing the metaverse, which 
enables interaction with a digital environment. Furthermore, we introduce the finger 
vein verification device for finger vein identification.

3.1  Virtual reality (VR) human–robot equipment of metaverse

HTC Vive is one of the earliest devices that allows users to thoroughly immerse 
themselves in the metaverse. It consists of a headset and a controller. Figure  3 
depicts the design structure of the HTC Vive device, with Fig.  3a depicting the 
headgear and Fig. 3b, c and d depicting the controller. Figure 3b is left-hand-side 
trackpad that moves the player character, touch and hold the trackpad until the char-
acter has reached the desired location. Figure 3c is right/left trigger that press the 
left/right trigger to select objects or options. Figure 3d is right grip button that press 
the right grip button or right trigger to grab the components of a generator. Table 1 
is the HTC Vive headset specification. The HTC Vive headgear gives a VR field of 
vision that is affected by the player’s motions, and the triggers and trackpads on the 
controllers are used to hold objects/select locations and control the player charac-
ter’s movements, respectively.

3.2  The verification device of finger vein identification

In the finger vein identification system, finger vein images are acquired using a spe-
cific device, a finger vein scanner. Because veins are not visible under normal light-
ing conditions, this device captures them using Near-Infrared (NIR) light. The image 
of the finger vein is then passed through a feature extractor module to produce the 
appropriate feature vector, which is subsequently stored in the database of enrolled 
finger veins. When the user login to the system, an image of his/her finger vein is 
extracted and compared to the registered finger veins in order to validate the correct 
user. The advantages of finger vein authentication are as follows:

• Biometric technology has the ability to not lose, not to be stolen, and to have no 
burden of remembering passwords.
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Fig. 3  HTC Vive headset and 
controllers. a Headset; b Left-
hand-side trackpad; c Right/left 
trigger; d Right grip button

Table 1  The HTC Vive headset specification

OS requirements: Windows™ 7 SP1, Windows™ 8.1, or Windows™ 10
GPU: NVIDIA GeForceTM GTX 1060, AMD RadeonTM RX 480 equivalent or better
CPU: Intel™ Core™ i5-4590 or AMD FX™ 8350 equivalent or better

Field of view 110°

Resolution 2160 × 1200 pixels (both eyes)
Tracing technology Outside-in tracking
Space requirements A minimum of 2 m × 1.5 m

Recommended play area: 3.5 m × 3.5 m
Screen refresh rate 90 Hz
Supported degrees of freedom The headset and controllers support 6 

degrees of freedom
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• The finger veins belong to the internal information of the human body and are 
not affected by the roughness of the epidermis and the external environment 
(temperature, humidity).

• Finger vein authentication has high accuracy, cannot be copied, cannot be forged, 
and is safe and convenient.

• Non-living fingers cannot obtain vein image features, and cannot identify and 
forge.

• Finger veins are used for identity authentication. When acquiring finger vein 
images, the identification can be completed without touching the finger with the 
device.

4  Experiments

4.1  Datasets

To evaluate our approach, we employed three publicly available datasets on finger 
veins: FV-USM [26], THU FVFDT2 [27], and SDUMLA [28] . Their properties are 
explained in more detail in the section below.

• The FV-USM dataset   [26]  ("Data Availability Statement"): This dataset was 
published by Sains University Malaysia. It was collected from a total of 123 peo-
ple’s index and middle fingers on their left and right hands, including 83 men 
and 40 women aged from 20 to 52  years. Images were taken in two sessions, 
with six images taken per finger in each session. It provided the extracted ROI 
images with a resolution of 100 × 300 pixels for finger vein recognition.

• The SDUMLA dataset   [28] ("Data Availability Statement"): There are 106 
participants were enrolled in the Shan-Dong University finger vein dataset 
(SDUMLA). Each participant contributed index, middle, and ring fingers from 
two hands, resulting in a total of 636 finger classes. Images of the captured fin-

Fig. 4  The accuracy of finger vein recognition system in different datasets
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gers are collected in a single session. Each finger provided 6 images during the 
session, resulting in a total of 3816 images. The spatial resolution of the original 
images is 320 × 240 pixels. Because their work does not provide the ROI fin-
ger vein image, preprocessed the dataset to obtain ROI images with a size of 
300 × 150 pixels.

• The THU FVFDT2 dataset  [27] ("Data Availability Statement"): Tsinghua Uni-
versity published the THUFV2 dataset in 2014. It included Regions of Interest 
(ROIs) of finger vein and dorsal textures from 610 different subjects, which cor-
responded to 610 images of each type. Images were captured in two separate ses-
sions. Each ROI was normalized to 200 × 100 pixels. Most of the subjects were 
Tsinghua University Graduate School students and staff volunteers from Shenz-
hen.

Our research team ensures that all research data are available. For each dataset, 
the training and validation set and the test set are split into two equal parts. In the 
FV-USM and THU-FV2 datasets, the first part is used for training and validation 
set, while the second part is used as test set. In the SDUMLA dataset, the first 
half of the labels is used as the training and validation sets, whereas the second 
half of the labels is used as the test set. The training and validation set is then 
divided into training set and validation set for use in training phase with an 8:2 
ratio. Table 2 describes the detail of finger vein datasets.

4.2  Experimental configuration

Our model is developed based on Densenet-161 architecture  [29]. It reuses 
weights from pretrained ImageNet to shorten training time and overcome the 
insufficient training data. Then, a custom embedder module is added to model for 
extracting features vectors. Finally, blur pool layers introduced in Sect.  2.2 are 
integrated to make model shift invariance. The proposed model architecture is 
represented in Table 3.

In the training phase, each dataset is divided into two different sets using 
the open set scenario: training and validation set, and test set as explained in 
Sect.  4.1. Model parameters are adjusted by using stochastic gradient descent 
(SGD) and one cycle learning rate scheduler during the training stage in 250 
epochs. To ensure a reliable comparison, the same configuration is used for all 
evaluation models.

Table 2  Details of the finger vein datasets

Dataset # of classes # of Sessions # of images per class Total samples

FV-USM 492 2 12 images (6 images per session) 5904
SDUMLA 636 1 6 images 3816
THU-FV2 610 2 2 images (1 image per session) 1220
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4.3  Experimental results

To evaluate the proposed system, EER (Equal Error Rate) and accuracy are used as 
evaluation metrics. EER metric is the most popular evaluation metric used in biom-
etric authentication system evaluation [30]. It is the point at which the false accept-
ance rate and the false rejection rate are equal. The lower EER value is the better 
system’s performance. Accuracy metric measures identification performance of bio-
metric system. It refers to a one to many matching situation. A queried finger vein 
is compared with all registered veins in the registered database to detect the correct 
vein identity. The number of queried vein images and enrolled vein images varies 
depending on the dataset. Each class in FV-USM dataset has 6 registered images 
and 6 queried images, whereas SDUMLA dataset has 3 registered images and 3 que-
ried images per class, and THU-FV2 dataset has just 1 registered image and 1 que-
ried image per class.

Table  4 shows the experimental results of Densenet-161  [29], modified 
Densenet-161 [22]  , and proposed model with preprocessing and without pre-
processing. Two tests were taken on each model on three public finger vein 
datasets: the first test was conducted without pretrained weights and the sec-
ond test was conducted with pretrained weights. In the first test, i.e., with non-
pretrained weights, the performance of proposed model is considerably higher 
than Densenet-161 and modified Densenet-161 model in FV-USM dataset and 
SDUMLA dataset but slightly worse than the Densenet-161 in THUFV2 dataset 

Table 3  Anti-aliasing modified 
densenet-161 architecture

Layers

Convolution 7 × 7 conv, stride 2

Max BlurPool 3 × 3 max pool, stride 1
3 × 3 max pool, stride 1

DenseBlock 1 [1 × 1 conv, 3 × 3 conv] × 6
Transition 1 1 × 1 conv

4 × 4 blur pool, stride 2
DenseBlock 2 [1 × 1 conv, 3 × 3 conv] × 12
Transition 2 1 × 1 conv

4 × 4 blur pool, stride 2
DenseBlock 3 [1 × 1 conv, 3 × 3 conv] × 36
Transition 3 1 × 1 conv

4 × 4 blur pool, stride 2
DenseBlock 4 [1 × 1 conv, 3 × 3 conv] × 24
Custom embedder module 7 × 7 global avg pool

batch-normalization
Dropout
full-connected (feature embedder)
batch-normalization

Classification layer full-connected (classifier)
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with preprocessing and non-preprocessing. In the second test, i.e., with pertained 
weights, the performance of proposed model outperforms Densenet-161 and 
modified Densenet-161 model in all datasets with preprocessing and non-pre-
processing. The preprocessing technique illustrates that it can improve the mod-
el’s performance, especially for non-pretrained weights with nearly 10% accu-
racy. However, in THUFV2 dataset with non-pretrained weights, it is not effective 
because of the low number of samples (1 sample per class and 1220 samples 
totally) and insufficient training epochs. Moreover, Figure  4 demonstrates the 
effectiveness of pretrained model in enhancing model performance and decreas-
ing training time compare to non-pretrained model. Our proposed system outper-
forms the state-of-the-art model in all experiments.    For datasets with insuffi-
cient data (THUFV2 dataset), combining pre-trained weight and preprocessing 
approach significantly improves model accuracy (72.06% to 88.19%). However, 
the augmentation strategy can be used to increase the model’s performance and 
make it more robust. 

5  Conclusion

This study proposes a special Finger Vein Recognition for the via a virtual reality 
(VR) human-robot equipment of the Metaverse in order to prevent others from 
misappropriating the via a virtual reality (VR) human-robot equipment of the 
metaverse. We propose a deep learning strategy for finger vein recognition that 
is based on an anti-aliasing convolution neural network and dual exposure fusion 
algorithm. The model is trained using the pretrained weight on the ImageNet 
dataset with the same training protocol and hyperparameters. The experimental 
results show that our system outperforms the existing state-of-the-art model on 
the three different public datasets. To achieve the improvement, we conducted 
experiments using various model structures and preprocessing techniques. The 
proposed models, which incorporate a blur pool layer and the dual exposure 
fusion algorithm, have never been employed previously in the finger vein rec-
ognition system. Thus, its implementation for vein recognition is novel. As a 
result, our proposed model increased both reliability and popularity in finger vein 
recognition.
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