Skip to main content
Log in

What is the axiomatic method?

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The modern notion of the axiomatic method developed as a part of the conceptualization of mathematics starting in the nineteenth century. The basic idea of the method is the capture of a class of structures as the models of an axiomatic system. The mathematical study of such classes of structures is not exhausted by the derivation of theorems from the axioms but includes normally the metatheory of the axiom system. This conception of axiomatization satisfies the crucial requirement that the derivation of theorems from axioms does not produce new information in the usual sense of the term called depth information. It can produce new information in a different sense of information called surface information. It is argued in this paper that the derivation should be based on a model-theoretical relation of logical consequence rather than derivability by means of mechanical (recursive) rules. Likewise completeness must be understood by reference to a model-theoretical consequence relation. A correctly understood notion of axiomatization does not apply to purely logical theories. In the latter the only relevant kind of axiomatization amounts to recursive enumeration of logical truths. First-order “axiomatic” set theories are not genuine axiomatizations. The main reason is that their models are structures of particulars, not of sets. Axiomatization cannot usually be motivated epistemologically, but it is related to the idea of explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott E. (1935) Flatland: A romance of many dimensions. Little, Brown & Company, Boston

    Google Scholar 

  • Aczel A. D. (2006) The artist and the mathematician: The story of Nicholas Bourbaki, the genius mathematician who never existed. Avalon, New York

    Google Scholar 

  • Bourbaki N. (1950) The architecture of mathematics. American Mathematical Monthly 57: 221–232

    Article  Google Scholar 

  • Ebbinghaus H.-D. (2007) Ernst Zermelo: An approach to his life and work. Springer, Berlin

    Google Scholar 

  • Frank Ph. (1947) Einstein: His life and times. A. A. Knopf, New York

    Google Scholar 

  • Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38, 173–198. (Reprinted & translation in Collected works (Vol. 1, pp. 144–195). Oxford: Oxford University Press).

  • Gödel K. (1983) Russell’s mathematical logic. In: Benacerraf P., Putnam H. (eds) Philosophy of mathematics. Cambridge University Press, New York, pp 447–469

    Google Scholar 

  • Hilbert, D. (1899). Grundlagen der Geometrie. In Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttinge (pp. 1–92). Leipzig: Teubner.

  • Hilbert, D. (1900). Mathematische Probleme. In Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse (pp. 253–297). Lecture given at the International Congress of Mathematicians, Paris.

  • Hilbert, D. (1918). Axiomatisches Denken. Mathematische Annalen, 8, 405–415. English translation in W. Ewald (Ed.), From Kant to Hilbert: A source book in the foundations of mathematics (Vol. 2, pp. 1105–1110). Oxford: Oxford University Press.

  • Hilbert D. (1922) Neubegrundung der Mathematik, Erste Mitteilung. Abandlungen aus dem Mathematischen Seminar Hamburger Universität 1: 157–171

    Article  Google Scholar 

  • Hintikka J. (1968) Behavioral criteria of radical translation. Synthese 19: 69–81

    Article  Google Scholar 

  • Hintikka J. (1996) The principles of mathematics revisited. Cambridge University Press, New York

    Book  Google Scholar 

  • Hintikka J. (2001) Post-Tarskian truth. Synthese 126: 17–36

    Article  Google Scholar 

  • Hintikka J. (2003) A distinction too few or too many? In: Gould C. (eds) Constructivism and practice. Roman and Littlefield, Lanham, MA, pp 47–74

    Google Scholar 

  • Hintikka J. (2004a) Independence-friendly logic and axiomatic set theory. Annals of Pure and Applied Logic 126: 313–333

    Article  Google Scholar 

  • Hintikka, J. (2004b). On the development of Aristotle’s ideas of scientific method and structure of science. In Analyses of Aristotle (pp. 153–174). Dordrecht: Kluwer.

  • Hintikka J. et al (2006) Truth, negation, and some other basic notions in logic. In: Benthem J. (eds) The age of alternative logics. Springer, Heidelberg, pp 195–219

    Chapter  Google Scholar 

  • Hintikka J. (2007a) Who has kidnapped the notion of information? In: Hintikka J. (eds) Socratic epistemology, explorations of knowledge-seeking by questioning. Cambridge University Press, New York, pp 189–210

    Google Scholar 

  • Hintikka J. (2007) Logical explanations. In: Hintikka J. (eds) Socratic epistemology, explorations of knowledge-seeking by questioning. Cambridge University Press, New York, pp 161–188

    Google Scholar 

  • Hintikka, J. (forthcoming). Reforming logic (and set theory).

  • Hintikka J., Karakadilar B. (2006) How to prove the consistency of arithmetic. Acta Philosophica Fennica 78: 1–15

    Google Scholar 

  • Laugwitz D. (1996) Bernhard Riemann 1826–1866: Wendepunkte in der Auffassung der Mathematik. Birkhäuser, Basel

    Google Scholar 

  • Majer U. (1995) Geometry, intuition and experience: From Kant to Hilbert. Erkenntnis 42: 261–295

    Article  Google Scholar 

  • Majer U. (2001) The axiomatic method and the foundations of science: Historical roots of mathematical physics in Göttingen (1900–1930). In: Rédei M., Stöltzner M. (eds) John von Neumann and the foundations of quantum physics. Kluwer, Dordrecht, pp 11–34

    Google Scholar 

  • Newton, I. (1972/1736). In A. Koyré & I. B. Cohen (Eds.), Isaac Newton’s Philosophiae Naturalis Principia Mathematica (Vol. 1). Cambridge: Harvard University Press.

  • Pour-El M. B., Richards J. (1989) Computability in analysis and physics. Springer, Heidelberg

    Google Scholar 

  • Reichenbach H. (1958) The philosophy of space and time. Dover, New York

    Google Scholar 

  • Sandu G. (1998) IF logic and truth definition. Journal of Philosophical Logic 27: 143–164

    Article  Google Scholar 

  • Tarski, A. (1935). Der Wahrheïtsbegriff in den formalisierten Sprachen. Studia Philosophica, 1, 261–405. English translation in Tarski (1956). Logic, semantics, metamathematics. New York: Oxford University Press.

  • Trisch M. (2005) Inconsistency, asymmetry, and non-locality. Oxford University Press, New York

    Google Scholar 

  • Zermelo, E. (1904). Proof that every set can be well-ordered. Original German in Mathematische Annalen, 59, 514–516. English translation in J. van Heijenoort (Ed.). (1967). From Frege to Gödel: A sourcebook in mathematical logic 1879–1931 (pp. 139–141). Cambridge, MA: Harvard University Press.

  • Zermelo, E. (1908). Investigations on the foundations of set theory. Original German in Mathematische Annalen, 65, 261–281. English translation in J. van Heijenoort (Ed.). (1967). From Frege to Gödel: A sourcebook in mathematical logic (pp. 1879–1931). Cambridge, MA: Harvard University Press.

  • Zermelo, E. (1930). New investigations on the foundations of set theory. Original German in Fundamenta Mathematicae, 16, 29–47. English translation in W. Ewald (Ed.). (1996). From Kant to Hilbert (Vol. 2, pp. 1208–1233). Oxford: Oxford University Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaakko Hintikka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hintikka, J. What is the axiomatic method?. Synthese 183, 69–85 (2011). https://doi.org/10.1007/s11229-009-9668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-009-9668-8

Keywords

Navigation