Skip to main content
Log in

Using constrained preemption to improve dropping fairness in optical burst switching networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a new scheme to tackle the “beat down” unfairness problem in optical burst switching networks. In the new scheme, the control packets of bursts with higher preemptive metric value are allowed to preempt the channel resources reserved earlier for bursts with lower preemptive value. However, the control packets of preempted bursts continue to make wasted channel reservations in successive optical cross connects along the burst lightpaths and may also preempt other data bursts. Unchecked preemptions, therefore, can degrade the throughput of the network and induce reverse unfairness. Our scheme uses carefully designed constraints to avoid excessive wasted channel reservations, reduce cascaded useless preemptions, and maintain healthy throughput levels. The extensive simulation results show that the constrained preemption scheme improves fairness compared to previous methods without degrading network throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El Houmaidi, M., Bassiouni, M., & Li, G. (2003). Dominating set algorithms for sparse placement of full and limited wavelength converters in WDM optical networks. Journal of Optical Networking, 2(6), 162–177.

    Google Scholar 

  2. Zhang, H., Jue, J. P., & Mukherjee, B. (2000). A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. SPIE Optical Networks Magazine, 1(1), 47–60.

    Google Scholar 

  3. Thiagarajan, S., & Somani, A. K. (2000). Capacity fairness of WDM networks with grooming capabilities. In OPTICOMM 2000 : Vol. 4233. SPIE proceedings (pp. 191–201). Dallas, October 2000. Dallas: SPIE.

    Google Scholar 

  4. Zhou, B., Bassiouni, M., & Li, G. (2005). Routing and wavelength assignment in optical networks using logical link representation and efficient bitwise computation. Journal of Photonic Network Communications, 10(3), 333–346.

    Article  Google Scholar 

  5. El Houmaidi, M., & Bassiouni, M. (2006). Dependency based analytical model for computing connection blocking rates and its application in the sparse placement of optical converters. IEEE Transactions on Communications, 54(1), 159–168.

    Article  Google Scholar 

  6. Qiao, C., & Yoo, M. (1999). Optical burst switching (OBS)—a new paradigm for an optical Internet. Journal of High Speed Networks, 8, 69–84.

    Google Scholar 

  7. Wei, J. Y., & McFarland, R. I. (2000). Just-in-time signaling for WDM optical burst switching networks. Journal of Lightwave Technology, 18(12), 2019–2037.

    Article  Google Scholar 

  8. Zhou, B., Bassiouni, M., & Li, G. (2004). Improving Fairness in optical burst switching networks. Journal of Optical Networking, 3(4), 214–228.

    Article  Google Scholar 

  9. White, J. A., Tucker, R. S., & Long, K. (2002). Merit-based scheduling algorithm for optical burst switching. In Proceedings of the international conference on optical Internet (pp. 75–77). Seoul, July 2002. Seoul: Korean Institute of Communication Sciences.

    Google Scholar 

  10. Vokkarane, V., & Jue, J. (2002). Prioritized routing and burst segmentation for QoS in optical burst-switched networks. In Proceedings of optical fiber communication conference (OFC), Anaheim, CA, March 2002. Optical Society of America.

  11. Loi, C. H., Liao, W., & Yang, D. N. (2002). Service differentiation in optical burst switched networks. In Proceedings of IEEE Globecom, Taipei, Taiwan, November 2002. IEEE.

  12. Yoo, M., & Qiao, C. (1998). A new optical burst switching protocol for supporting quality of service. In SPIE proceedings of conference of all-optical networking (Vol. 3531, pp. 396–405). November 1998. Boston: SPIE.

  13. Labrador, M., & Banerjee, S. (1999). Performance of selective packet dropping schemes in multi-hop networks. In Proceedings of IEEE GLOBECOM (pp. 1604–1609). Rio de Janeiro: IEEE.

    Google Scholar 

  14. Poppe, F., Laevens, K., Michiel, H., & Molenaar, S. (2002). Quality-of-service differentiation and fairness in optical burst-switched networks. In Proceeding of Opticomm (pp. 118–124). Boston: SPIE.

    Google Scholar 

  15. Srinivasan, R., & Somani, A. K. (2002). Request-specific routing in WDM grooming networks. In Proceedings of IEEE international conference on communications (ICC 2002) (Vol. 5, pp. 2876–2880). April–May 2002. New York: IEEE.

  16. Ogushi, I., Arakawa, S., Murata, M., & Kitayama, K. (2001). Parallel reservation protocols for achieving fairness in optical burst switching. In Proceedings of IEEE workshop on high performance switching and routing (pp. 213–217). May 2001. Dallas: IEEE.

    Chapter  Google Scholar 

  17. Wang, X., Morikawa, H., & Aoyama, T. (2000). Burst optical deflection routing protocol for wavelength routing WDM networks. In Proceedings of OPTICOMM 2000 (pp. 257–266). Dallas: SPIE.

    Google Scholar 

  18. Suter, B., Lakshman, T. V., Stiliadis, D., & Choudhury, A. (1998). Design considerations for supporting TCP with per-flow queuing. In Proceedings of INFOCOMM ’98 (pp. 299–306). April 1998. San Francisco: IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, B., Bassiouni, M.A. & Li, G. Using constrained preemption to improve dropping fairness in optical burst switching networks. Telecommun Syst 34, 181–194 (2007). https://doi.org/10.1007/s11235-007-9033-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-007-9033-5

Keywords

Navigation