Skip to main content
Log in

End-to-end loss differentiation for video streaming with wireless link errors

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Video delivery in heterogeneous wired/wireless networks is challenging, since link errors commonly degrade throughput performance, smoothness, and eventually impair the playback quality. We present an end-to-end Loss Differentiation Mechanism (LDA) which effectively decouples congestion from wireless loss in order to abolish the damage of error-induced multiplicative decrease on flow throughput and smoothness. The proposed LDA relies on Round Trip Time measurements to estimate the queuing delay and determine the appropriate error-recovery strategy. This mechanism can be easily adapted and incorporated into existing Additive Increase Multiplicative Decrease (AIMD) protocols, enabling them to utilize the available resources more efficiently. In this context, we incorporate the LDA into AIMD-based Scalable Streaming Video Protocol (SSVP), an end-to-end TCP-friendly protocol optimized for video streaming applications. Based on simulation results, we show that the combined approach provides the desired functionality to bind operationally wired and wireless links, within the framework of bandwidth efficiency, smoothness, and fairness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balakrishnan, H., Padmanabhan, V., Seshan, S., & Katz, R. (1997). A comparison of mechanisms for improving TCP performance over wireless links. IEEE/ACM Transactions on Networking, 5(6), 756–769.

    Article  Google Scholar 

  2. Bansal, D., & Balakrishnan, H. (2001). Binomial congestion control algorithms. In Proc. IEEE INFOCOM 2001, Anchorage, Alaska, USA, April 2001.

  3. Biaz, S., & Vaidya, N. H. (2005). De-randomizing congestion losses to improve TCP performance over wired-wireless networks. IEEE/ACM Transactions on Networking, 13(3), 596–608.

    Article  Google Scholar 

  4. Boyce, J., & Gaglianello, R. (1998). Packet loss effects on MPEG video sent over the public Internet. In Proc. ACM Multimedia, Bristol, UK, September 1998.

  5. Brakmo, L., & Peterson, L. (1995). TCP Vegas: end to end congestion avoidance on a global internet. IEEE Journal on Selected Areas in Communications, 13(8), 1465–1480.

    Article  Google Scholar 

  6. Bregni, S., Caratti, D., & Martignon, F. (2003). Enhanced loss differentiation algorithms for use in TCP sources over heterogeneous wireless networks. In Proc. IEEE GLOBECOM, San. Francisco, CA, USA, December 2003.

  7. Capone, A., Fratta, L., & Martignon, F. (2004). Bandwidth estimation schemes for TCP over wireless networks. IEEE Transactions on Mobile Computing, 3(2), 129–143.

    Article  Google Scholar 

  8. Cen, S., Cosman, P. C., & Voelker, G. M. (2003). End-to-end differentiation of congestion and wireless losses. IEEE/ACM Transactions on Networking, 11(5), 703–717.

    Article  Google Scholar 

  9. Chen, M., & Zakhor, A. (2004). Rate control for streaming over wireless. In Proc. IEEE INFOCOM 2004, Hong Kong, China, March 2004.

  10. Chiu, D., & Jain, R. (1989). Analysis of the increase/decrease algorithms for congestion avoidance in computer networks. Journal of Computer Networks and ISDN, 17(1), 1–14.

    Article  Google Scholar 

  11. Chockalingam, A., Zorzi, M., & Tralli, V. (1999). Wireless TCP performance with link layer FEC/ARQ. In Proc. IEEE ICC, Vancouver, Canada, June 1999.

  12. Floyd, S., & Fall, K. (1999). Promoting the ese of end-to-end congestion control in the Internet. IEEE/ACM Transactions on Networking, 7(4), 458–472.

    Article  Google Scholar 

  13. Floyd, S., Handley, M., Padhye, J., & Widmer, J. (2000). Equation-based congestion control for unicast applications. In Proc. ACM SIGCOMM 2000, Stockholm, Sweden, August 2000.

  14. Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking, 1(4), 397–413.

    Article  Google Scholar 

  15. Gilbert, E. (1960). Capacity of a burst-noise channel. Bell System Technical Journal, 39(5), 1253–1266.

    Google Scholar 

  16. Goff, T., Moronski, J., Phatak, D., & Gupta, V. (2000). Freeze-TCP: A true end-to-end enhancement mechanism for mobile environments. In Proc. IEEE INFOCOM 2000, Tel-Aviv, Israel, March 2000.

  17. Grieco, L., & Mascolo, S. (2004). Performance evaluation and comparison of Westwood+, New Reno, and Vegas TCP congestion control. ACM Computer Communication Review, 34(2), 25–38.

    Article  Google Scholar 

  18. Hu, F., & Sharma, N. K. (2002). Enhancing wireless Internet performance. IEEE Communications Surveys and Tutorials, 4(1), 2–15.

    Article  Google Scholar 

  19. Jamieson, K., & Balakrishnan, H. (2007). PPR: Partial packet recovery for wireless networks. In Proc. ACM SIGCOMM 2007, Kyoto, Japan, August 2007.

  20. Jin, C., Wei, D. X., & Low, S. H. (2004). TCP FAST: motivation, architecture, algorithms, performance. In Proc. IEEE INFOCOM 2004, Hong Kong, China, March 2004.

  21. Kohler, E., Handley, M., & Floyd, S. (2006). Designing DCCP: Congestion control without reliability. In Proc. ACM SIGCOMM 2006, Piza, Italy, September 2006.

  22. Martin, J., Nilsson, A., & Rhee, I. (2003). Delay-based congestion avoidance for TCP. IEEE/ACM Transactions on Networking, 11(3), 356–369.

    Article  Google Scholar 

  23. Mascolo, S., Casetti, C., Gerla, M., Sanadidi, M., & Wang, R. (2001). TCP Westwood: Bandwidth estimation for enhanced transport over wireless links. In Proc. ACM MOBICOM 2001, Rome, Italy, July 2001.

  24. Papadimitriou, P., & Tsaoussidis, V. (2007). SSVP: A congestion control scheme for real-time video streaming. Computer Networks, 51(15), 4377–4395.

    Article  Google Scholar 

  25. Papadimitriou, P., Tsaoussidis, V., & Tsekeridou, S. (2005). The impact of network and protocol heterogeneity on application QoS. In Proc. 10 th IEEE int/nal symposium on computers and communications (ISCC), Cartagena, Spain, June 2005.

  26. Papadimitriou, P., Tsaoussidis, V., & Zhang, C. (2007). Enhancing video streaming delivery over wired/wireless networks. In Proc. 13th European wireless conference (EW 2007), Paris, France, April 2007.

  27. Ramakrishnan, K., & Floyd, S. (1999). A proposal to add explicit congestion notification (ECN) to IP, RFC 2481, January 1999.

  28. Rejaie, R., Handley, M., & Estrin, D. (1999). RAP: An end-to-end rate-based congestion control mechanism for realtime streams in the Internet. In Proc. IEEE INFOCOM 1999, New York, USA, March 1999.

  29. Sinha, P., Venkitaraman, N., Sivakumar, R., & Bharghavan, V. (1999). WTCP: a reliable transport protocol for wireless wide-area networks. In Proc. ACM MOBICOM ’99, Seattle, USA, August 1999.

  30. Stevens, W. (1997). TCP slow start, congestion avoidance, fast retransmit, and fast recovery algorithms, RFC 2001, January 1997.

  31. TCP-friendly rate control NS-2 implementation. Available online at: http://www.isi.edu/nsnam/dist/.

  32. Tsaoussidis, V., & Badr, H. (2000). TCP-probing: towards an error control schema with energy and throughput performance gains. In Proc. 8 th IEEE int/nal conference on network protocols (ICNP), Osaka, Japan, November 2000.

  33. Tsaoussidis, V., & Matta, I. (2002). Open issues on TCP for mobile computing. Journal of Wireless Communications and Mobile Computing, 2(1), 3–20.

    Article  Google Scholar 

  34. Tsaoussidis, V., & Zhang, C. (2002). TCP real: Receiver-oriented congestion control. Computer Networks, 40(4), 477–497.

    Article  Google Scholar 

  35. Tsaoussidis, V., & Zhang, C. (2005). The dynamics of responsiveness and smoothness in heterogeneous networks. IEEE Journal on Selected Areas in Communications, 23(6), 1178–1189.

    Article  Google Scholar 

  36. Yang, Y. R., Kim, M. S., & Lam, S. S. (2001). Transient behaviors of TCP-friendly congestion control protocols. In Proc. IEEE INFOCOM, Anchorage, Alaska, USA, April 2001.

  37. Yang, Y. R., & Lam, S. S. (2000). General AIMD congestion control. In Proc. 8th IEEE ICNP, Osaka, Japan, November 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Papadimitriou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadimitriou, P., Tsaoussidis, V. & Zhang, C. End-to-end loss differentiation for video streaming with wireless link errors. Telecommun Syst 43, 295–312 (2010). https://doi.org/10.1007/s11235-009-9203-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-009-9203-8

Keywords

Navigation