Skip to main content
Log in

Optically transparent integrated metro-access network

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

High-capacity optical transmission technologies have made possible very high data rates and a large number of wavelength channels. Further, optical network functionality has made progress from simple point-to-point WDM links to automatically switched optical networks. In the future, dynamic burst-switched and packet-switched photonic networks may be expected. This paper describes a novel architecture of transparent WDM metropolitan area network (MAN) that is capable of switching on both packet-by-packet and burst-by-burst basis, thereby having the potential to achieve high throughput efficiency. The optically transparent MAN also includes a large part of the access network infrastructure. It is scalable, flexible, easy upgradeable and able to support heterogeneous network traffic. Some results of a preliminarly study on network performance are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wada, N., Chujo, W., & Kitayama, K. (2001). 1.28 Tbit/s (160 Gbit/s × 8 wavelengths) throughput variable length packet switching using optical code based label switch. In ECOC 2001 (Vol. 6, No. 2, pp. 62–63), Amsterdam, Netherlands.

    Google Scholar 

  2. Meagher, B. et al. (2000). Design and implementation of ultra-low latency optical label switching for packet-switched WDM networks. IEEE Journal of Lightwave Technology, 18(12), 1978–1987.

    Article  Google Scholar 

  3. White, M. et al. (2000). The architecture of HORNET: a packet-over-WDM multiple-access optical metropolitan area ring network. Computer Networks, 32(5), 587–598.

    Article  Google Scholar 

  4. Aleksić, S. (2003). Packet-switched OTDM networks employing the packet compression/expansion technique. Photonic Network Communications, 5(3), 273–288.

    Article  Google Scholar 

  5. Rosberg, Z., Zukerman, M., & White, J. (2003). Performance analyses of optical burst-switching networks. IEEE Journal on Selected Areas in Communications, 21(7), 1187–1197.

    Article  Google Scholar 

  6. Bjørnstad, S., & Øverby, H. (2005). Quality of service differentiation in optical packet/burst switching. A performance and reliability perspective. In ICTON2005 (Vol. 1, pp. 85–90), Barcelona, Spain.

    Google Scholar 

  7. Dolzer, K., Gauger, C., Späth, J., & Bodamer, S. (2001). Evaluation of reservation mechanisms for optical burst switching. AEÜ International Journal of Electronics and Communications, 55(1), 1–8.

    Article  Google Scholar 

  8. Yao, S. et al. (2001). All-optical packet switching for metropolitan area networks: opportunities and challenges. IEEE Communications Magazine, 39(3), 142–148.

    Article  Google Scholar 

  9. Kazovsky, L. G. et al. (2001). High capacity metropolitan area networks for the next generation Internet. In 35th asilomar conf. signals, systems, and comp. (Vol. 1, pp. 3–7), Pacific Grove, CA.

    Google Scholar 

  10. Scheutzow, M. et al. (2003). Wavelength reuse for efficient packet-switched transport in an AWG-based metro WDM network. IEEE Journal of Lightwave Technology, 21(6), 1435–1455.

    Article  Google Scholar 

  11. Acampora, A. S. (1990). A high capacity metropolitan area network using lightwave transmission and time-multiplexed switching. IEEE Transactions on Communications, 38(10), 1761–1770.

    Article  Google Scholar 

  12. Zapata, A. et al. (2004). Next generation 100-gigabit metro Ethernet (100 GbME) using multiwavelength optical rings. IEEE Journal of Lightwave Technology, 22(11), 2420–2434.

    Article  Google Scholar 

  13. Aleksić, S. (2006). Design considerations for a high-speed metro network using all-optical packet processing. In ICTON2006 (Vol. 3, pp. 82–86).

    Google Scholar 

  14. Carena, A. et al. (2004). RingO, An experimental WDM optical packet network for metro applications. IEEE Journal on Selected Areas in Communications, 22(8), 1561–1571.

    Article  Google Scholar 

  15. Herzog, M., Maier, M., & Reisslein, M. (2004). Metropolitan area packet-switched WDM networks: a survey on ring systems. IEEE Communications Surveys and Tutorials, 6(2), 2–20.

    Article  Google Scholar 

  16. Dey, D., van Bochove, A., Koonen, A., Geuzebroek, D., & Salvador, M. (2001). FLAMINGO: a packet-switched IP-over-WDM all-optical MAN. In ECOC 2001 (pp. 480–481), Amsterdam, Netherlands, Sept. 30–Oct. 4.

    Google Scholar 

  17. Chlamtac, I., Elek, V., Fumagalli, A., & Szabó, C. (1999). Scalable WDM access network architecture based on photonic slot routing. IEEE/ACM Transactions on Networking, 7(1), 1–9.

    Article  Google Scholar 

  18. Ramamirtham, J., & Turner, J. (2003). Time sliced optical burst switching. In IEEE INFOCOM 2003 (Vol. 3, pp. 2030–2038), San Francisco, CA, USA, March/April.

    Google Scholar 

  19. Aleksić, S. (2007). Transmission performance of optically transparent metro edge nodes. In ICTON2007 (Vol. 3, pp. 289–293), Rome, Italy.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slaviša Aleksić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksić, S. Optically transparent integrated metro-access network. Telecommun Syst 52, 1505–1515 (2013). https://doi.org/10.1007/s11235-011-9515-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9515-3

Keywords

Navigation