Skip to main content

Advertisement

Log in

Modelling communication network challenges for Future Internet resilience, survivability, and disruption tolerance: a simulation-based approach

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Communication networks play a vital role in our daily lives and they have become a critical infrastructure. However, networks in general, and the Internet in particular face a number of challenges to normal operation, including attacks and large-scale disasters, as well as due to mobility and the characteristics of wireless communication channels. Understanding network challenges and their impact can help us to optimise existing networks and improve the design of future networks; therefore it is imperative to have a framework and methodology to study them. In this paper, we present a framework to evaluate network dependability and performability in the face of challenges. We use a simulation-based approach to analyse the effects of perturbations to normal operation of networks. We analyse Sprint logical and physical topologies, synthetically generated topologies, and present a wireless example to demonstrate a wide spectrum of challenges. This framework can simulate challenges on logical or physical topologies with realistic node coordinates using the ns-3 discrete event simulator. The framework models failures, which can be static or dynamic that can temporally and spatially evolve. We show that the impact of network challenges depends on the duration, the number of network elements in a challenge area, and the importance of the nodes in a challenge area. We also show the differences between modelling the logical router-level and physical topologies. Finally, we discuss mitigation strategies to alleviate the impact of challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.

  2. Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse ({EMP}) Attack (2004). Report, Critical National Infrastructures.

  3. Pandemic influenza preparedness, response, and recovery guide for critical infrastructure and key resources (2006). CI/KR guide, Department of Homeland Security (DHS).

  4. Pandemic influenza impact on communications networks study (2007). Unclassified, Department of Homeland Security (DHS).

  5. Severe space weather events: understanding societal and economic impacts (2008). Workshop report, National Research Council.

  6. Sprint network maps (2010). https://www.sprint.net/network_maps.php.

  7. Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11–33.

    Article  Google Scholar 

  8. Bassiri, B., & Heydari, S. S. (2009). Network survivability in large-scale regional failure scenarios. In Proc. of ACM C3S2E (pp. 83–87).

    Chapter  Google Scholar 

  9. Brown, A. B. (2004). Oops! Coping with human error in IT systems. ACM Queue, 2(8), 34–41.

    Article  Google Scholar 

  10. Broyles, D., Jabbar, A., & Sterbenz, J. P. G. (2010). Design and analysis of a 3-D Gauss-Markov mobility model for highly-dynamic airborne networks. In Proceedings of the international telemetering conference (ITC), San Diego, CA.

    Google Scholar 

  11. Callaway, D. S., Newman, M. E. J., Strogatz, S. H., & Watts, D. J. (2000). Network robustness and fragility: percolation on random graphs. Physical Review Letters, 85(25), 5468–5471.

    Article  Google Scholar 

  12. Camp, T., Boleng, J., & Davies, V. (2002). A survey of models for ad hoc network research. Wireless Communication and Mobile Computing (WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends, and Applications, 2(5), 483–502.

    Article  Google Scholar 

  13. Çetinkaya, E. K., Broyles, D., Dandekar, A., Srinivasan, S., & Sterbenz, J. P. G. (2010). A comprehensive framework to simulate network attacks and challenges. In Proc. of the 2nd IEEE/IFIP international workshop on reliable networks design and modeling (RNDM) (pp. 538–544), Moscow, Russia.

    Google Scholar 

  14. Çetinkaya, E. K., Jabbar, A., Broyles, D., Dandekar, A., Mahmood, R., & Sterbenz, J. P. G. (2010). Challenge modelling. https://wiki.ittc.ku.edu/resilinets/Challenge_Modelling.

  15. Chatzigiannakis, I., Kinalis, A., Mylonas, G., Nikoletseas, S., Prasinos, G., & Zaroliagis, C. (2008). TRAILS, a toolkit for efficient, realistic and evolving models of mobility, faults and obstacles in wireless networks. In Proc. of 41st annual simulation symposium (pp. 23–32).

    Google Scholar 

  16. Chatzigiannakis, I., Mylonas, G., & Nikoletseas, S. (2006). Modeling and evaluation of the effect of obstacles on the performance of wireless sensor networks. In Proc. of 39th annual simulation symposium

    Google Scholar 

  17. Cohen, L. (1986). Trends in U.S. Broad-band fiber optic transmission systems. IEEE Journal on Selected Areas in Communications, 4(4), 488–497.

    Article  Google Scholar 

  18. Cohen, R., Erez, K., ben Avraham, D., & Havlin, S. (2000). Resilience of the Internet to random breakdowns. Physical Review Letters, 85(21), 4626–4628.

    Article  Google Scholar 

  19. Cowie, J. (2009). Lights out in Rio. http://www.renesys.com/blog/2009/11/lights-out-in-rio.shtml.

  20. Cowie, J. (2011). Egypt leaves the Internet. http://www.renesys.com/blog/2011/01/egypt-leaves-the-Internet.shtml.

  21. Cowie, J. (2011). Egypt returns to the Internet. http://www.renesys.com/blog/2011/02/egypt-returns-to-the-Internet.shtml.

  22. Cowie, J. (2011) Japan quake. http://www.renesys.com/blog/2011/03/japan-quake.shtml.

  23. Cowie, J. (2011). Libyan disconnect. http://www.renesys.com/blog/2011/02/libyan-disconnect-1.shtml.

  24. Cowie, J. (2011). What Libya learned from Egypt. http://www.renesys.com/blog/2011/03/what-libya-learned-from-egypt.shtml.

  25. Cowie, J., Popescu, A., & Underwood, T. (2005). Impact of Hurricane Katrina on Internet infrastructure. Report, Renesys.

  26. Cowie, J. H., Ogielski, A. T., Premore, B., Smith, E. A., & Underwood, T. (2003). Impact of the 2003 blackouts on Internet communications (Tech. rep.). Renesys Corporation.

  27. Crawford, D. E. (1993). Fiber optic cable dig-ups: causes and cures. Report, Network Reliability and Interoperability Council.

  28. Daugherty, H., & Klein, W. (1995). US network reliability issues and major outage performance. In Proc. of ISCC (pp. 114–119).

    Google Scholar 

  29. Doyle, J., Alderson, D., Li, L., Low, S., Roughan, M., Shalunov, S., Tanaka, R., & Willinger, W. (2005). The “robust yet fragile” nature of the Internet. PNAS, 102(41), 14,497–14,502.

    Article  Google Scholar 

  30. Ellison, R. J., Fisher, D. A., Linger, R. C., Lipson, H. F., Longstaff, T., & Mead, N. R. (1999). Survivable network systems: an emerging discipline (Tech. Rep. CMU/SEI-97-TR-013). Carnegie-Mellon Software Engineering Institute, PA.

  31. ENISA Virtual Working Group on Network Providers Resilience Measures (2009). Network resilience and security: challenges and measures (Tech. Rep. WP 2009–WPK 1.2 VWG 1). ENISA----European Network and Information Security Agency.

  32. Fall, K. (2003). A delay-tolerant network architecture for challenged Internets. In Proc. of ACM SIGCOMM (pp. 27–34).

    Google Scholar 

  33. Fry, M., Fischer, M., Karaliopoulos, M., Smith, P., & Hutchison, D. (2010). Challenge identification for network resilience. In Proc. of the IEEE 6th EURO-NF conference on Next Generation Internet (NGI) (pp. 1–8).

    Chapter  Google Scholar 

  34. Gray, J. (1990). A census of Tandem system availability between 1985 and 1990. IEEE Transactions on Reliability, 39(4), 409–418.

    Article  Google Scholar 

  35. Hameed, M. A., Jabbar, A., Çetinkaya, E. K., & Sterbenz, J. P. G. (2010). Deriving network topologies from real world constraints. In Proc. of IEEE GLOBECOM workshop on Complex and Communication Networks (CCNet) (pp. 415–419), Miami, FL.

    Google Scholar 

  36. Holme, P., Kim, B. J., Yoon, C. N., & Han, S. K. (2002). Attack vulnerability of complex networks. Physical Review E, 65(5), 056109.

    Article  Google Scholar 

  37. Im, G. P., & Baskerville, R. L. (2005). A longitudinal study of information system threat categories: the enduring problem of human error. ACM SIGMIS Database, 36(4), 68–79.

    Article  Google Scholar 

  38. Jabbar, A., Rohrer, J., Oberthaler, A., Çetinkaya, E., Frost, V., & Sterbenz, J. P. G. (2009). Performance comparison of weather disruption-tolerant cross-layer routing algorithms. In Proc. of IEEE INFOCOM (pp. 1143–1151).

    Google Scholar 

  39. Jabbar, A., Shi, Q., Çetinkaya, E., & Sterbenz, J. P. G. (2008). KU-LocGen: location and cost-constrained network topology generator (ITTC Technical Report ITTC-FY2009-TR-45030-01). The University of Kansas, Lawrence, KS.

  40. Kaiser, P., Midwinter, J., & Shimada, S. (1987). Status and future trends in terrestrial optical fiber systems in North America, Europe, and Japan. IEEE Communications Magazine, 25(10), 8–13.

    Article  Google Scholar 

  41. Kamoun, F. (2005). Toward best maintenance practices in communications network management. International Journal of Network Management, 15(5), 321–334.

    Article  Google Scholar 

  42. Kitamura, Y., Lee, Y., Sakiyama, R., & Okamura, K. (2007). Experience with restoration of Asia Pacific network failures from Taiwan earthquake. IEICE Transactions on Communications, 90(11), 3095–3103.

    Article  Google Scholar 

  43. KMI Corporation (1999). North American fiberoptic long-haul routes planned and in place.

  44. Krock, R. (2011). Lack of emergency recovery planning is a disaster waiting to happen. IEEE Communications Magazine, 49(1), 48–51.

    Article  Google Scholar 

  45. Kuhn, D. (1997). Sources of failure in the public switched telephone network. IEEE Computer, 30(4), 31–36.

    Article  Google Scholar 

  46. Laprie, J., Kanoun, K., & Kaaniche, M. (2007). Modelling interdependencies between the electricity and information infrastructures. LNCS, 4680, 54–67.

    Google Scholar 

  47. Lau, F., Rubin, S., Smith, M., & Trajkovic, L. (2000). Distributed denial of service attacks. In Proc. of IEEE SMC (pp. 2275–2280).

    Google Scholar 

  48. Lesk, M. (2007). The new front line: Estonia under cyberassault. IEEE Security and Privacy, 5(4), 76–79.

    Article  Google Scholar 

  49. Mahadevan, P., Krioukov, D., Fomenkov, M., Dimitropoulos, X., Claffy, K. C., & Vahdat, A. (2006). The Internet AS-level topology: three data sources and one definitive metric. ACM SIGCOMM CCR, 36(1), 17–26.

    Article  Google Scholar 

  50. Mahajan, R., Wetherall, D., & Anderson, T. (2002). Understanding BGP misconfiguration. In Proc. of the ACM SIGCOMM (pp. 3–16).

    Google Scholar 

  51. Mahmood, R. A. (2009). Simulating challenges to communication networks for evaluation of resilience. Master’s thesis, The University of Kansas, Lawrence, KS.

  52. Mannie, E., & Papadimitriou, D. (2006). Recovery (protection and restoration) terminology for generalized multi-protocol label switching (GMPLS). RFC 4427 (informational). http://www.ietf.org/rfc/rfc4427.txt.

  53. Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C. N., Ganjali, Y., & Diot, C. (2008). Characterization of failures in an operational IP backbone network. IEEE/ACM Transactions on Networking, 16(4), 749–762.

    Article  Google Scholar 

  54. Mase, K. (2011). How to deliver your message from/to a disaster area. IEEE Communications Magazine, 49(1), 52–57.

    Article  Google Scholar 

  55. Molisz, W., & Rak, J. (2006). End-to-end service survivability under attacks on networks. Journal of Telecommunications and Information Technology, 3, 19–26.

    Google Scholar 

  56. Morrison, K. (2011). Rapidly recovering from the catastrophic loss of a major telecommunications office. IEEE Communications Magazine, 49(1), 28–35.

    Article  Google Scholar 

  57. Nagaraja, K., Oliveira, F., Bianchini, R., Martin, R. P., & Nguyen, T. D. (2004). Understanding and dealing with operator mistakes in Internet services. In Proc. of the 6th conference on symposium on operating systems design & implementation (pp. 61–76). Berkeley: USENIX Association.

    Google Scholar 

  58. Neumayer, S., & Modiano, E. (2010). Network reliability with geographically correlated failures. In Proc. of IEEE INFOCOM (pp. 1–9).

    Chapter  Google Scholar 

  59. Neumayer, S., Zussman, G., Cohen, R., & Modiano, E. (2009). Assessing the vulnerability of the fiber infrastructure to disasters. In Proc. of IEEE INFOCOM (pp. 1566–1574).

    Google Scholar 

  60. Nicol, D., Sanders, W., & Trivedi, K. (2004). Model-based evaluation: from dependability to security. IEEE Transactions on Dependable and Secure Computing, 1(1), 48–65.

    Article  Google Scholar 

  61. The ns-2 Network Simulator. http://www.isi.edu/nsnam/ns/.

  62. The ns-3 Network Simulator. http://www.nsnam.org/.

  63. US Federal Communications Commission (FCC). Network Outage Reporting System (NORS). http://www.fcc.gov/pshs/services/cip/nors/nors.html.

  64. Oberg, J., Whitt, A., & Mills, R. (2011). Disasters will happen—are you ready? IEEE Communications Magazine, 49(1), 36–42.

    Article  Google Scholar 

  65. Oppenheimer, D., Ganapathi, A., & Patterson, D. A. (2003). Why do Internet services fail, and what can be done about it. In Proc. of USENIX USITS (pp. 1–16).

    Google Scholar 

  66. O’Reilly, G., Jrad, A., Nagarajan, R., Brown, T., & Conrad, S. (2006). Critical infrastructure analysis of telecom for natural disasters. In Proc. of IEEE Networks (pp. 1–6).

    Google Scholar 

  67. Pappas, V., Wessels, D., Massey, D., Lu, S., Terzis, A., & Zhang, L. (2009). Impact of configuration errors on DNS robustness. IEEE Journal on Selected Areas in Communications, 27(3), 275–290.

    Article  Google Scholar 

  68. Parfitt, T. (2011). Georgian woman cuts off web access to whole of Armenia. http://www.guardian.co.uk/world/2011/apr/06/georgian-woman-cuts-web-access.

  69. Park, S. T., Khrabrov, A., Pennock, D., Lawrence, S., Giles, C., & Ungar, L. (2003). Static and dynamic analysis of the Internet’s susceptibility to faults and attacks. In Proc. of IEEE INFOCOM (Vol. 3, pp. 2144–2154).

    Google Scholar 

  70. Magoni, D. (2003). Tearing down the Internet. IEEE Journal on Selected Areas in Communications, 21(6), 949–960.

    Article  Google Scholar 

  71. Partridge, C., Barford, P., Clark, D., Donelan, S., Paxson, V., Rexford, J., & Vernon, M. (2003). The Internet under crisis conditions: learning from September 11. Washington DC: The National Academies Press.

    Google Scholar 

  72. Popescu, A., Premore, B., & Zmijewski, E. (2008). Impact of the Middle East cable breaks: a global BGP perspective. Presentation, Renesys Corp, San Jose, CA.

  73. Rak, J., & Walkowiak, K. (2010). Survivability of anycast and unicast flows under attacks on networks. In Proc. of the 2nd IEEE/IFIP international workshop on reliable networks design and modeling (RNDM) (pp. 497–503), Moscow, Russia.

    Google Scholar 

  74. Ran, Y. (2011). Considerations and suggestions on improvement of communication network disaster countermeasures after the Wenchuan earthquake. IEEE Communications Magazine, 49(1), 44–47.

    Article  Google Scholar 

  75. Rohrer, J. P., Jabbar, A., & Sterbenz, J. P. G. (2009). Path diversification: a multipath resilience mechanism. In Proceedings of the 7th international workshop on the design of reliable communication networks (DRCN) (pp. 343–351), Washington, DC, USA.

    Google Scholar 

  76. Spring, N., Mahajan, R., & Wetherall, D. (2002). Measuring ISP topologies with Rocketfuel. In Proc. of ACM SIGCOMM (pp. 133–145).

    Google Scholar 

  77. Sterbenz, J. P. G., Çetinkaya, E. K., Hameed, M. A., Jabbar, A., Qian, S., & Rohrer, J. P. Evaluation of network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation, and experimentation (invited paper). Telecommunication Systems (in this issue).

  78. Sterbenz, J. P. G., Çetinkaya, E. K., Hameed, M. A., Jabbar, A., & Rohrer, J. P. (2011). Modelling and analysis of network resilience (invited paper). In Proc. of the 3rd IEEE/ACM international conference on communication systems and networks (COMSNETS) (pp. 1–10), Bangalore.

    Google Scholar 

  79. Sterbenz, J. P. G., & Hutchison, D. (2006). ResiliNets: multilevel resilient and survivable networking initiative Wiki. http://wiki.ittc.ku.edu/resilinets.

  80. Sterbenz, J. P. G., Hutchison, D., Çetinkaya, E. K., Jabbar, A., Rohrer, J. P., Schöller, M., & Smith, P. (2010). Resilience and survivability in communication networks: strategies, principles, and survey of disciplines. Computer Networks, 54(8), 1245–1265.

    Article  Google Scholar 

  81. Sterbenz, J. P. G., Krishnan, R., Hain, R. R., Jackson, A. W., Levin, D., Ramanathan, R., & Zao, J. (2002). Survivable mobile wireless networks: issues, challenges, and research directions. In Proc. of ACM WiSe (pp. 31–40).

    Chapter  Google Scholar 

  82. Sterbenz, J. P. G., Medhi, D., Ramamurthy, B., Scoglio, C., Hutchison, D., Plattner, B., Anjali, T., Scott, A., Buffington, C., Monaco, G. E., Gruenbacher, D., McMullen, R., Rohrer, J. P., Sherrell, J., Angu, P., Cherukuri, R., Qian, H., & Tare, N. (2011). The great plains environment for network innovation (GpENI): a programmable testbed for future Internet architecture research. In T. Magedanz, A. Gavras, N. H. Thanh, & J. S. Chase (Eds.), Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering: Vol. 46. Testbeds and research infrastructures. Development of networks and communities (pp. 428–441). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  83. Rohrer, J. P., Çetinkaya, E. K., & Sterbenz, J. P. G. (2011). Progress and challenges in large-scale Future Internet experimentation using the GpENI programmable testbed. In Proceedings of the 6th ACM international Conference on Future Internet technologies (CFI) (pp. 46–49), Seoul, June.

    Chapter  Google Scholar 

  84. Styron, H. C. (2001). CSX tunnel fire: Baltimore, MD. US Fire Administration (Technical Report USFA-TR-140). Federal Emergency Management Administration, Emmitsburg, MD.

  85. Sydney, A., Scoglio, C., Youssef, M., & Schumm, P. (2010). Characterising the robustness of complex networks. International Journal of Internet Technology and Secured Transactions, 2, 291–320.

    Article  Google Scholar 

  86. T1A1.2 Working Group (1993). Network survivability performance (Technical Report T1A1.2/93-001R3). Alliance for Telecommunications Industry Solutions (ATIS).

  87. Turner, D., Levchenko, K., Snoeren, A. C., & Savage, S. (2010). California fault lines: understanding the causes and impact of network failures. In Proc. of the ACM SIGCOMM (pp. 315–326).

    Google Scholar 

  88. Waxman, B. (1988). Routing of multipoint connections. IEEE Journal on Selected Areas in Communications, 6(9), 1617–1622.

    Article  Google Scholar 

  89. Whitman, M. E. (2003). Enemy at the gate: threats to information security. Communications of the ACM, 46(8), 91–95.

    Article  Google Scholar 

  90. Wu, J., Zhang, Y., Mao, Z. M., & Shin, K. G. (2007). Internet routing resilience to failures: analysis and implications. In Proc. of the ACM CoNEXT (pp. 1–12).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egemen K. Çetinkaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çetinkaya, E.K., Broyles, D., Dandekar, A. et al. Modelling communication network challenges for Future Internet resilience, survivability, and disruption tolerance: a simulation-based approach. Telecommun Syst 52, 751–766 (2013). https://doi.org/10.1007/s11235-011-9575-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9575-4

Keywords

Navigation