Skip to main content
Log in

An adaptive location management scheme for mobile broadband cellular systems

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper presents an adaptive location management strategy that considers both location updating and paging by evaluating realistic mobility patterns. It proposes the design of an adaptive macro-location area based on multi-registration adapted to the terminals’ trajectory to reduce location updates. The solution includes an estimation of residence probabilities in the areas of the multi-registered list. This facilitates the design of a sequential paging scheme that reduces the average paging cost. Results show the capability of the solution to adapt to mobility patterns and traffic conditions in the network to minimize the overall location cost. Furthermore, the multi-registration approach and the reduced complexity in both network infrastructure and mobile terminals make the solution suitable for new packet-based broadband cellular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feng, L., Zhao, Q., & Zhang, H. (2007). Location management based on distance and direction for PCS networks. Computer Networks, 51(1), 134–152.

    Article  Google Scholar 

  2. Abutaleb, A., & Li, V. O. K. (1997). Location update optimization in personal communication systems. Wireless Networks, 3(3), 205–216.

    Article  Google Scholar 

  3. Rose, C. (1996). Minimizing the average cost of paging and registration: a timer-based method. Wireless Networks, 2, 629–638.

    Article  Google Scholar 

  4. Hwang, H.-W., Chang, M.-F., & Tseng, C.-C. (2000). A direction-based location update scheme with a line-paging strategy for PCS networks. IEEE Communications Letters, 4, 149–151.

    Article  Google Scholar 

  5. Akyildiz, I. F., Ho, J. S. M., & Lin, Y.-B. (1996). Movement-based location update and selective paging for PCS networks. IEEE/ACM Transactions on Networking, 4(4), 629–638.

    Article  Google Scholar 

  6. Bar-Noy, A., Kessler, I., & Sidi, M. (1995). Mobile users: to update or not to update? Wireless Networks, 1, 175–195.

    Article  Google Scholar 

  7. Kyamakya, K., & Jobmann, K. (2005). Location management in cellular networks: classification of the most important paradigms, realistic simulation framework, and relative performance analysis. IEEE Transactions on Vehicular Technology, 54(2), 687–708.

    Article  Google Scholar 

  8. Brown, T. X., & Mohan, S. (1997). Mobility management for personal communication systems. IEEE Transactions on Vehicular Technology, 46(2), 269–278.

    Article  Google Scholar 

  9. Birk, Y., & Nachman, Y. (1995). Using direction and elapsed-time information to reduce the wireless cost of locating mobile units in cellular networks. Wireless Networks, 1(4), 403–412.

    Article  Google Scholar 

  10. Lee, B.-K., & Hwang, C.-S. (1999). A predictive paging scheme based on the movement direction of a mobile host. In Proc. IEEE VTC’99 (pp. 2158–2162).

    Google Scholar 

  11. Rose, C., & Yates, R. (1995). Minimizing the average cost of paging under delay constraints. Wireless Networks, 1(2), 211–219.

    Article  Google Scholar 

  12. Krishnamachari, B., Gau, R.-H., Wicker, S. B., & Haas, Z. (2004). Optimal sequential paging in cellular wireless networks. Wireless Networks, 10(2), 121–131.

    Article  Google Scholar 

  13. Abutaleb, A., & Li, V. O. K. (1997). Paging strategy optimization in personal communication systems. Wireless Networks, 3(3), 195–204.

    Article  Google Scholar 

  14. 3GPP TS 23.401. (2009-03). Technical specification group services and system aspects; general packet radio service (GPRS) enhancements for evolved universal terrestrial radio access network (E-UTRAN) access (Release 9) V9.0.0.

  15. James, T., Vroblefski, M., & Nottingham, Q. (2007). A hybrid grouping genetic algorithm for the registration area planning problem. Computer Communications, 30(10), 2180–2190.

    Article  Google Scholar 

  16. Wang, T.-P., Hwang, S.-Y., & Tseng, C.-C. (1998). Registration area planning for PCS networks using genetic algorithms. IEEE Transactions on Vehicular Technology, 47(3), 987–995.

    Article  Google Scholar 

  17. Vroblefski, M., & Brown, E. C. (2006). A grouping genetic algorithm for registration area planning. Omega, 34, 220–230.

    Article  Google Scholar 

  18. Bhattacharjee, P. S., Saha, D., & Mukherjee, A. (2004). An approach for location area planning in a personal communication services network (PCSN). IEEE Transactions on Wireless Communications, 3, 1176–1187.

    Article  Google Scholar 

  19. Shyu, S., Lin, B. M. T., & Hsiao, T. (2006). Ant colony optimization for the cell assignment problem in PCS networks. Computers & Operations Research, 33(6), 1713–1740.

    Article  Google Scholar 

  20. Bejerano, Y., Smith, M. A., Naor, J., & Immorlica, N. (2006). Efficient location area planning for personal communication systems. IEEE/ACCM Transactions on Networking, 14(2), 438–450.

    Article  Google Scholar 

  21. Kunz, T., Siddiqi, A. A., & Scourias, J. (2001). The Peril of evaluating location management proposals through simulations. Wireless Networks, 7(6), 635–643.

    Article  Google Scholar 

  22. García, P., Casares, V., & Mataix, J. (2002). Reducing location update and paging costs in a PCS network. IEEE Transactions on Wireless Communications, 1(1), 200–209.

    Article  Google Scholar 

  23. Wong, V. W.-S., & Leung, V. C. M. (2000). Location management for next-generation personal communication networks. IEEE Network, 14(4), 18–24.

    Article  Google Scholar 

  24. Kazantzakis, M. G., Koukoutsidis, I. Z., Demestichas, P. P., & Theologou, M. E. (2004). Probability criterion paging area planning in future mobile communications systems. Computer Communications, 27(7), 581–588.

    Article  Google Scholar 

  25. Pattaramalai, S., & Aalo, V. A. (2008). Distribution of random sum cell dwell times in wireless network. IEE Electronics Letters, 44(4), 301–302.

    Article  Google Scholar 

  26. http://www.opnet.com.

  27. Scourias, J., & Kunz, T. (1999). Activity-based mobility modeling: realistic evaluation of location management schemes for cellular networks. In Proc. IEEE WCNC’99, Vol. 1, New Orleans, USA (pp. 296–300).

    Google Scholar 

  28. Bratanov, P. I., & Bonek, E. (2003). Mobility model of vehicle-borne terminals in urban cellular systems. IEEE Transactions on Vehicular Technology, 52(4), 947–952.

    Article  Google Scholar 

  29. Fiore, M., Härri, J., Fethi, F., & Bonnet, C. (2007). Vehicular mobility simulation for VANETs. In Proc. of the 40th IEEE annual simulation symposium (ANSS’07), Mar. 2007, Norfolk, USA.

    Google Scholar 

  30. Härri, J., Fiore, M., Fethi, F., & Bonnet, C. (2006). VanetMobiSim: generating realistic mobility patterns for VANETs. In Proc. of the 3rd ACM international workshop on vehicular ad hoc networks (VANET’06), Sep. 2006, Los Angeles, USA.

    Google Scholar 

  31. Jardosh, A., Belding Royer, E. M., Almeroth, K. C., & Suri, S. (2003). Towards realistic mobility models for mobile ad hoc networks. In Proc. of the 9th annual international conference on mobile computing and networking (MOBICOM’03), San Diego, USA (pp. 217–219).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ramón Gállego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canales, M., Gállego, J.R., Hernández, Á. et al. An adaptive location management scheme for mobile broadband cellular systems. Telecommun Syst 52, 299–315 (2013). https://doi.org/10.1007/s11235-011-9665-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9665-3

Keywords

Navigation