Skip to main content
Log in

Bit rate of HSDPA in tunnel’s cigar-shaped microcells

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper presents the bit rate of High Speed Downlink Packet Access (HSDPA) mode for cigar-shaped microcells deployed at tunnels. The hybrid propagation loss model with log-normal shadowing is used to calculate the signal to interference plus noise ratio taking into account the expected value and the variance of the interference. A model of ten cigar-shaped microcells is used in the analysis. The effect of the propagation parameters on the HSDPA performance (coverage and bit rate) is studied. It is found that, with a sector transmitted power of 1 W, a sector with a range of 1 km can be deployed with the worst case propagation parameters values. It is shown that it is impossible to support more than 6 HSDPA codes for full coverage within the sector what ever the power assigned to the HSDPA service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. QUALCOMM, HSDPA for improved downlink data transfer, October 2004.

  2. Derksen, J., Jansen, R., Maijala, M., & Westerberg, E. (2006). HSDPA performance and evolution. Ericsson Review, 3, 117–120.

    Google Scholar 

  3. Ahmed, B. T., Ramón, M. C., & Ariet, L. H. (2007). UMTS-HSDPA in High Altitude Platforms (HAPs) communications. Turkish Journal of Electrical Engineering & Computer Sciences, 15(1), 105–112.

    Google Scholar 

  4. Ahmed, B. T., & Ramón, M. C. (2009). UMTS-HSDPA in High Altitude Platforms (HAPs) communications with finite transmitted power and unequal cell’s load. Computer Communications, 32(5), 828–833.

    Article  Google Scholar 

  5. Saadani, A., & Landre, J. B. (2009). Realistic performance of HSDPA evolution 64-QAM in macro-cell environment. In IEEE 69th VTC conference, April 2009 (pp. 1–5).

    Google Scholar 

  6. Palttala, J. (2009). Indoor network impact on the macrocell HSPA performance. Master of Science Thesis, Tampere University of Technology.

  7. Kovacs, I. Z., Pedersen, K. I., Wigard, J., Frederiksen, F., & Kolding, T. E. (2006). HSDPA performance in mixed outdoor-indoor micro cell scenario. In PIMRC 06 (pp. 1–5).

    Google Scholar 

  8. Tanaka, S., Ishii, H., Sao, T., Iizuku, Y., & Nakamori, T. (2005). HSDPA throughput performance using an experimental HSDPA transmission system. NTT DoCoMo Technical Journal, 6(4), 19–28.

    Google Scholar 

  9. Assaad, M., Jouaber, B., & Zeghlache, D. (2004). TCP performance over UMTS-HSDPA system. Telecommunications Systems, 27(2–4), 371–391.

    Article  Google Scholar 

  10. Chen, L., & Yuan, D. (2011). Coverage planning for optimizing HSDPA performance and controlling R99 soft handover. Telecommunications Systems. doi:10.1007/s11235-010-9414-z.

    Google Scholar 

  11. Parniewicz, D., Stasiak, M., & Zwierzykowski, P. (2013). Analytical model of the multi-service cellular network servicing multicast connections. Telecommunications Systems, 52(2), 1091–1100.

    Google Scholar 

  12. Zhang, Y. P. (2000). A hybrid model for propagation loss prediction in tunnels. In Millennium conference on antennas & propagation, Davos, Switzerland, April 2000.

    Google Scholar 

  13. Ahmed, B. T., Ramon, M. C., & Ariet, L. H. (2004). WCDMA uplink capacity and interference statistics of a long tunnel cigar-shaped microcells using the hybrid model of propagation with imperfect power control. Wireless Personal Communications, 31, 19–31.

    Article  Google Scholar 

  14. Mehailescu, C., Lagrange, X., & Godlewski, P. (1999). Soft handover analysis in downlink UMTS WCDMA system. In Proc. IEEE MoMuC, San Diego, CA (pp. 279–285).

    Google Scholar 

  15. Hanzo, L., Blogh, J. S., & Ni, S. (2008). 3G, HSDPA, HSUPA and FDD versus TDD networking: smart antennas and adaptive modulation. New York: Wiley.

    Book  Google Scholar 

  16. Digital Video Broadcasting (DVB): framing structure, channel coding and modulation for digital terrestrial television (DVB-T). European Broadcasting Union, ETS 300 744, page 40.

  17. Melis, B., & Romano, G. (2000). UMTS W-CDMA: evaluation of radio performance by means of link level simulations. IEEE Personal Communications, 7(3), 42–49.

    Article  Google Scholar 

  18. Holma, H., & Toskala, A. (2007). WCDMA for UMTS-HSPA evolution and LTE (4th ed.). New York: Wiley.

    Book  Google Scholar 

  19. Mader, A., Staehle, D., Pries, R., & Spahn, M. (2007). Impact of HSDPA transmit power allocation schemes on the performance of UMTS networks. In 2007 Australasian telecommunication networks and applications conference, Christchurch, New Zealand, December 2007 (pp. 414–419).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bazil Taha Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, B.T. Bit rate of HSDPA in tunnel’s cigar-shaped microcells. Telecommun Syst 56, 429–440 (2014). https://doi.org/10.1007/s11235-013-9770-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9770-6

Keywords

Navigation