Skip to main content
Log in

Spectrum leasing based on Nash Bargaining Solution in cognitive radio networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Cognitive radio is becoming an emerging technology that has the potential of dealing with the stringent requirement and scarcity of the radio spectrum resource. In this paper, we focus on the dynamic spectrum access of cognitive radio networks, in which the primary user (PU) and secondary users (SUs) coexist. In property-rights model, the PU has property of the bandwidth and may decide to lease it to secondary network for a fraction of time in exchange for appropriate remuneration. We propose a cooperative communication-aware spectrum leasing framework, in which, PU selects SUs as cooperative relays to help transmit information, while the selected SUs have the right to decide their payment made for PU in order to obtain a proportional access time to the spectrum. Then, the spectrum leasing scheme is cast into a Nash Bargaining Problem, and the Nash Bargaining Solution (NBS) can be used to fairly and efficiently address the resource allocation between PU and secondary network, enhancing both the utility of PU and secondary network. Numerical results show that spectrum leasing based on NBS is an effective method to improve performance for cognitive radio networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen, D., Yin, S., Zhang, Q., Liu, M., & Li, S. (2009). Mining spectrum usage data: a large-scale spectrum measurement study. In Proc. of ACM the 15th annual international conference on mobile computing and networking. doi:10.1145/1614320.1614323.

    Google Scholar 

  2. Chen, Y. X., Zhao, Q., & Swami, A. (2006). Joint design and separation principle for opportunistic spectrum access. In Proc. of fortieth asilomar conference on signals, systems and computers, Pacific Grove, CA, 29–30 Oct. 2006 (pp. 696–700).

    Google Scholar 

  3. Dasilva, L. A., Bogucka, H., & Mackenzie, A. B. (2011). Game theory in wireless networks. IEEE Communications Magazine, 49(8), 110–111.

    Article  Google Scholar 

  4. Debreu, G. (1952). A social equilibrium existence theorem. Proceedings of the National Academy of Sciences of the United States of America, Oct., 886–893.

    Article  Google Scholar 

  5. Devroye, N., Mitran, P., & Tarokh, V. (2006). Achievable rates in cognitive radio. IEEE Transactions on Information Theory, 52(5), 1813–1827.

    Article  Google Scholar 

  6. Han, Z., Ji, Z., & Ray Liu, K. J. (2005). Fair multiuser channel allocation for OFDMA networks using Nash bargaining solutions and coalitions. IEEE Transactions on Communications, 53(8), 1366–1376.

    Article  Google Scholar 

  7. Hu, Z., Zhang, G. Y., & Zhao, L. L. (2010). A multi-stage dynamic spectrum sharing framework in cognitive radio networks. In Proc. of international conference on computer engineering and technology, Chengdu, 16–18 Apr. 2010 (pp. V2-501–V2-505).

    Google Scholar 

  8. Koltsidas, G., & Pavlidou, F. N. (2010). A game theoretical approach to clustering of ad-hoc and sensor networks. Telecommunication Systems, 47(1), 81–93.

    Google Scholar 

  9. Meng, J., Yin, W. T., Li, H. S., Hossain, E., & Han, Z. (2011). Collaborative spectrum sensing from sparse observations in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 29(2), 327–337.

    Article  Google Scholar 

  10. Muthuramalingam, B., Bhashyam, S., & Thangaraj, A. (2012). A decode and forward protocol for two-stage Gaussian relay networks. IEEE Transactions on Communications, 60(1), 68–73.

    Article  Google Scholar 

  11. Owen, G. (1995). Game theory. London: Academic Press.

    Google Scholar 

  12. Peha, J. M. (2005). Approaches to spectrum sharing. IEEE Communications Magazine, 43(2), 10–12.

    Article  Google Scholar 

  13. Peng, M. G., Liu, Y., Wei, D. Y., Wang, W. B., & Chen, H. H. (2011). Hierarchical cooperative relay based heterogeneous networks. IEEE Wireless Communications, 18(3), 48–56.

    Article  Google Scholar 

  14. Qiang, N., & Zarakovitis, C. C. (2012). Nash bargaining game theoretic scheduling for joint channel and power allocation in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 30(1), 70–81.

    Article  Google Scholar 

  15. Sakran, H., & Shokair, M. (2011). Hard and softened combination for cooperative spectrum sensing over imperfect channels in cognitive radio networks. Telecommunication Systems doi:10.1007/s11235-011-9467-7.

    Google Scholar 

  16. Simeone, O., Stanojev, I., Savazzi, S., Bar-Ness, Y., Spagnolini, U., & Pickholtz, R. (2008). Spectrum leasing via distributed cooperation in cognitive radio. In Proc. of IEEE international conference on communications, Beijing, 19–23 May 2008 (pp. 3427–3431).

    Google Scholar 

  17. Tahir, M., & Mazumder, S. K. (2008). Markov chain model for performance analysis of transmitter power control in contention based wireless MAC protocol. Telecommunication Systems, 38(3), 99–110.

    Article  Google Scholar 

  18. Tang, L., Chen, Q. B., Wang, G. Y., Zeng, X. P., & Wang, H. (2011). Opportunistic power allocation strategies and fair subcarrier allocation in OFDM-based cognitive radio networks. Telecommunication Systems doi:10.1007/s11235-011-9486-4.

    Google Scholar 

  19. Vassaki, S., Panagopoulos, A. D., & Constantinou, P. (2011). Evaluation of channel dependent bandwidth allocation in wireless access networks: centralized and distributed approach. Telecommunication Systems doi:10.1007/s11235-011-9481-9.

    Google Scholar 

  20. Wang, B. B., Wu, Y. L., & Liu, K. J. R. (2010). Game theory for cognitive radio networks: an overview. Computer Networks, 54(14), 2537–2561.

    Article  Google Scholar 

  21. Wang, W., Wu, K. J., Luo, H. Y., Yu, G. D., & Zhang, Z. Y. (2011). Sensing error aware delay-optimal channel allocation scheme for cognitive radio networks. Telecommunication Systems doi:10.1007/s11235-011-9472-x.

    Google Scholar 

  22. Wang, X. B., Li, Z., Xu, P. C., Xu, Y. Y., Gao, X. B., & Chen, H. H. (2010). Spectrum sharing in cognitive radio networks—an auction-based approach. IEEE Transactions on Systems, Man and Cybernetics, 40(3), 587–596.

    Article  Google Scholar 

  23. Xu, H., & Li, B. C. (2010). Efficient resource allocation with flexible channel cooperation in OFDMA cognitive radio networks. In Proc. of IEEE INFOCOM, San Diego, CA, 14–19 May 2010 (pp. 1–9).

    Google Scholar 

  24. Yang, B., Feng, G., Shen, Y. Y., Long, C. N., & Guan, X. P. (2009). Channel-aware access for cognitive radio networks. IEEE Transactions on Vehicular Technology, 58(7), 3726–3737.

    Article  Google Scholar 

  25. Yang, C. G., & Li, J. D. (2011). Performance analysis of a Stackelberg game-theoretical strategy design in cognitive radio networks. In Proc. of IEEE international conference on signal processing, communications and computing, Xian, 14–16 Sep. 2011 (pp. 1–5).

    Google Scholar 

  26. Zhang, J., & Zhang, Q. (2009). Stackelberg game for utility-based cooperative cognitive radio networks. In Proc. of ACM international symposium on mobile ad hoc networking and computing. doi:10.1145/1530748.1530753.

    Google Scholar 

  27. Zhang, Q., Jia, J. C., & Zhang, J. (2009). Cooperative relay to improve diversity in cognitive radio networks. IEEE Communications Magazine, 47(2), 111–117.

    Article  Google Scholar 

  28. Zhang, Y. H., & Leung, C. (2009). Cross-layer resource allocation for real-time services in OFDM-based cognitive radio systems. Telecommunication Systems, 42(1–2), 97–108.

    Article  Google Scholar 

  29. Zhu, J., Wang, J., Luo, T., & Li, S. J. (2009). Adaptive transmission scheduling over fading channels for energy-efficient cognitive radio networks by reinforcement learning. Telecommunication Systems, 42(1–2), 123–138.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Programme of China (973 Programme) (no. 2010CB731800), Key Project of National Nature Science Foundation of China (no. 60934003), National Nature Science Foundation of China (no. 61104033; no. 61172095; no. 61203104) and Nature Science Foundation of Hebei Province (no. F2011203226; no. F2012203109; no. F2012203126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaocheng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, X., Wang, X., Ma, K. et al. Spectrum leasing based on Nash Bargaining Solution in cognitive radio networks. Telecommun Syst 57, 313–325 (2014). https://doi.org/10.1007/s11235-013-9860-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9860-5

Keywords

Navigation