Skip to main content

Advertisement

Log in

Energy-aware adaptive topology adjustment in wireless body area networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Wireless body area networks (WBANs) represent a key emerging technology to resolve the connection issues on, in or around the human body. One of the most important and challenging issues in WBANs is to maximize the network lifetime. Employing additional relaying node to save energy was considered in the literatures available. Different from the related work, we propose a novel adaptive MAC protocol for WBANs named Network Longevity Enhancement by Energy Aware medium access control Protocol (NLEEAP), which reduces energy consumption without introducing additional devices. The procedures in NLEEAP consist of relay request, relay response and superframe adjustment. The relay operation is initiated when the shortage of a node’s residual energy occurs. Once the relay succeeds, NLEEAP smoothly switches the network topology from single-hop to multi-hop. Simulations are conducted and the results show the superiority of NLEEAP in energy efficiency compared with that of existing standard of IEEE 802.15.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jensen, D. (2011). SIVAM: Communication, navigation and surveillance for the Amazon. http://www.aviationtoday.com/cgi/av/show_mag.cgi?pub=av&mon=0602&file=0602sivam.htm/. Accessed 20 March.

  2. Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., et al. (2012). A comprehensive survey of wireless body area networks: On PHY, MAC, and network layers solutions. Journal of Medical Systems, 36(3), 1065–1094.

  3. Ullah, S., Shen, B., Riazul Islam, S. M., Khan, P., Saleem, S., & Kwak, K. S. (2010). A study of MAC protocols for WBANs. Sensors, 10(1), 128–154.

    Article  Google Scholar 

  4. Sthapit, P., & Pyun, J. Y. (2011). Medium reservation based sensor MAC protocol for low latency and high energy efficiency. Telecommunication Systems, 52(4), 2387–2395. doi:10.1007/s11235-011-9551-z.

    Article  Google Scholar 

  5. Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based wireless sensor networks. Telecommunication Systems, 52(4), 2489–2502. doi:10.1007/s11235-011-9568-3.

    Article  Google Scholar 

  6. Zhen, B., Patel, M., Lee, S. H., & Astrin, A. (2008). TG6 Technical requirements document (TRD). IEEE 802.15-08-0644-09-0006.

  7. Lewis, D. (2008). 802.15.6 Call for applications-response summary. IEEE 802.15-08-0407-05-0006.

  8. Fang, G., & Dutkiewicz, E. (2009). BodyMAC: Energy efficient TDMA-based MAC protocol for wireless body area networks. In Proceedings of the 9th IEEE International Symposium on Communications and Information Technologies (ISCIT 2009), Incheon, South Korea, pp. 1455–1459.

  9. Li, C., Li, H. B., & Kohno, R. (2009). Reservation-based dynamic TDMA protocol for medical body area networks. IEICE Transactions on Communications, E92.B(2), 387–395.

    Article  Google Scholar 

  10. Seo, Y. S., Kim, D. Y., & Cho, J. (2010). A dynamic CFP allocation and opportunity contention-based WBAN MAC protocol. IEICE Transactions on Communications, E93–B(4), 850–853.

    Article  Google Scholar 

  11. Ullah, S., & Kwak, K. S. (2012). An ultra low-power and traffic-adaptive medium access control protocol for wireless body area network. Journal of Medical Systems, 36(3), 1021–1030.

  12. Hussain, M.A., Alam, N., Ullah, S., Ullah, N., & Kwak, K.S. (2010). TDMA based directional MAC for WBAN. In Proceedings of the 6th IEEE International Conference on Networked Computing (INC 2010), Gyeongju, South Korea, pp. 321–325.

  13. Zhang, Y., & Dolmans, G. (2011). Priority-guaranteed MAC protocol for emerging wireless body area networks. Annales des Telecommunications/Annals of Telecommunications, 66(3–4), 229–241.

    Article  Google Scholar 

  14. Otal, B., Alonso, L., & Verikoukis, C. (2009). Highly reliable energy-saving MAC for wireless body sensor networks in healthcare systems. IEEE Journalon Selected Areas in Communicaitons, 27(4), 553–565.

    Article  Google Scholar 

  15. Ullah, N., Khan, P., & Kwak, K. S. (2011). A very low power MAC (VLPM) protocol for wireless body area networks. Sensors, 11(4), 3717–3737.

    Article  Google Scholar 

  16. Reusens, E., Joseph, W., Vermeeren, G., & Martens, L. (2007). On-body measurements and characterization of wireless communication channel for arm and torso of human. In Proceedings of 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007) (Vol. 13, pp. 264–269).

  17. Fort, A., Desset, C., De Doncker, P., Wambacq, P., & Van Biesen, L. (2006). An ultra-wideband body area propagation channel model-from statistics to implementation. IEEE Transations on Microwave Theory and Techniques, 54(4), 1820–1826.

    Article  Google Scholar 

  18. Latre, B., Braem, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., & Demeester, P. (2007). A low-delay protocol for multihop wireless body area networks. In Proceedings of the 4th IEEE Annual International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MOBIQUITOUS 2007), Philadelphia, PA, 2007, pp. 434–441.

  19. Kwon, H. T., & Lee, S. K. (2009). Energy-efficient multi-hop transmission in body area networks. In Proceedings of the 20th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2009), Tokyo, Japan, pp. 2142–2146.

  20. Ehyaie, A., Hashemi, M., & Khadivi, P. (2009). Using relay network to increase lifetime in wireless body area sensor networks. In Proceedings of 2009 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks & Workshops (WoWMoM), Kos, Greece, pp. 1–6.

  21. Braem, B., Latre, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., Martens, L., & Demeester, P. (2007). The need for cooperation and relaying in short-range high path loss sensor networks. In Proceedings of 2007 IEEE International Conference on Sensor Technologies and Applications (SensorComm 2007), Valencia, Spain, pp. 566–571.

  22. Reusens, E., Joseph, W., Latre, B., Braem, B., Vermeeren, G., Tanghe, E., et al. (2009). Characterization of on-body communication channel and energy efficient topology design for wireless body area networks. IEEE Transactions on Information Technology in Biomedicine, 13(6), 933–945.

    Article  Google Scholar 

  23. Vergados, D. J., Sgora, A., Vergados, D. D., Vouyioukas, D., & Anagnostopoulos, I. (2012). Fair TDMA scheduling in wireless multihop networks. Telecommunication Systems, 50(3), 181–198.

    Article  Google Scholar 

  24. Wang, J., Chen, M., & Leung, V. C. M. (2011). Forming priority based and energy balanced ZigBee networks—a pricing approach. Telecommunication Systems, 52, 1281–1292. doi:10.1007/s11235-011-9640-z.

    Google Scholar 

  25. Dimitrova, D. C., Berg, J. L., & Heijenk, G. (2011). Uplink packet scheduling in cellular networks with relaying—comparative study. Telecommunication Systems, 48(3–4), 237–246.

    Article  Google Scholar 

  26. Wang, X., Huang, W., Wang, S., Zhang, J., & Hu, C. (2011). Delay and capacity tradeoff analysis for MotionCast. IEEE/ACM Transactions on Networking, 19(5), 1354–1367.

    Article  Google Scholar 

  27. Wang, X., Fu, L., & Hu, C. (2012). Multicast performance with hierarchical cooperation. IEEE/ACM Transactions on Networking, 20(3), 917–930.

    Article  Google Scholar 

  28. IEEE 802.15 WPAN Task Group 6 Body Area Networks (BAN). http://www.ieee802.org/15/pub/TG6.html. Accessed Nov 2014.

  29. IEEE Std 802.15.6, IEEE Standard for local and metropolitan area networks - Part 15.6: Wireless Body Area Networks, Feb. 2012.

  30. Timmons, N. F., & Scanlon, W. G. (2011). Improving the ultra-low-power performance of IEEE 802.15.6 by adaptive synchronisation. IET Wireless Sensor Systems, 1(3), 161–170.

    Article  Google Scholar 

  31. IEEE Std 802.15.4, IEEE Standard for local and metropolitan area networks - Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs), Sept. 2011.

  32. IEEE 802.15 WPAN Task Group 4j Medical Body Area Networks (MBAN). http://www.ieee802.org/15/pub/TG4j.html. Accessed Nov 2014.

  33. IEEE 802.15 WPAN Task Group 4n China Medical Band. http://www.ieee802.org/15/pub/TG4n.html. Accessed Nov 2014.

  34. http://www2.nict.go.jp/w/w122/old/mt/b192/mirai-sf/overview_e.html. Accessed Nov 2014.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61231008, 61271176 and 61401334, National Science and Technology Major Project under Grant No. 2013ZX03005007-003, National Basic Research Program of China (973 Program) under Grant No. 2009CB320404, Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) under Grant No. IRT0852, the Fundamental Research Funds for the Central Universities, and the 111 Project (B08038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelian Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Li, J., Yuan, J. et al. Energy-aware adaptive topology adjustment in wireless body area networks. Telecommun Syst 58, 139–152 (2015). https://doi.org/10.1007/s11235-014-9899-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9899-y

Keywords

Navigation