Skip to main content
Log in

Low complexity trellis representations of convolutional codes via sectionalization of the minimal trellis

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

It has been shown by McEliece and Lin that convolutional codes can be represented by a minimal trellis structure in order to reduce the decoding complexity of the Viterbi algorithm. This trellis module has an irregular structure presenting sections with different number of states. In this paper we present the sectionalization of the minimal trellis module which yields a more compact and regular trellis representation (in terms of maximum number of states and total number of sections) with the same decoding complexity and distance spectrum of the minimal trellis module. We investigate the effects of the trellis sectionalization over the trellis and merge complexity measures. A set of rules are constructed to govern these effects. A list of the most compact sectionalized trellis modules with the same complexities than the minimal module is shown for codes of several rates. We show that various trellis topologies proposed in the literature are specific cases of the sectionalized minimal trellis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Uchôa-Filho, B. F., Souza, R. D., Pimentel, C., & Jar, M. (2009). Convolutional codes under a minimal trellis complexity measure. IEEE Transactions on Communications, 57(1), 1–5.

    Article  Google Scholar 

  2. McEliece, R. J., & Lin, W. (1996). The trellis complexity of convolutional codes. IEEE Transactions on Information Theory, 42(6), 1855–1864.

    Article  Google Scholar 

  3. Kienle, F., Wehn, N., & Meyr, H. (2011). On complexity, energy-and implementation-efficiency of channel decoders. IEEE Transaction on Communications, 59(12), 3301–3310.

    Article  Google Scholar 

  4. Bougard, B. et al. (2004). Energy-scalability enhancement of wireless local area network transceivers. In Proceedings of the IEEE workshop on signal processing advances in wireless communications, Lisbon, Portugal (pp. 449–453).

  5. Vardy, A. (1998). Trellis structure of codes. In V. Pless & W. Huffman (Eds.), Handbook of coding theory (pp. 1989–2117). Amsterdam: Elsevier.

    Google Scholar 

  6. McEliece, R. J. (1996). On the BCJR trellis for linear block codes. IEEE Transactions on Information Theory, 42(4), 1072–1092.

    Article  Google Scholar 

  7. Lafourcade, A., & Vardy, A. (1996). Optimal sectionalization of a trellis. IEEE Transactions on Information Theory, 42(3), 689–703.

  8. Katsiotis, A., Rizomiliotis, P., & Kalouptsidis, N. (2012). Flexible convolutional codes: Variable rate and complexity. IEEE Transactions on Communications, 60(3), 608–613.

    Article  Google Scholar 

  9. Pedroni, B. U., Pedroni, V. A., & Souza, R. D. (2010). Hardware implementation of a Viterbi decoder using the minimal trellis. In Proceedings of the 4th international symposium on communication, control and signal processing (ISCCSP’2010), Limassol, Cyprus (pp. 1–4).

  10. Tang, H.-H., & Lin, M.-C. (2002). On \((n, n-1)\) convolutional codes with low trellis complexity. IEEE Transactions on Communications, 50(1), 37–47.

    Article  Google Scholar 

  11. Tang, H.-H., Lin, M.-C., & Uchôa-Filho, B. F. (2006). Minimal trellis modules and equivalent convolutional codes. IEEE Transactions on Information Theory, 2(8), 3738–3746.

    Article  Google Scholar 

  12. Katsiotis, A., Rizomiliotis, P., & Kalouptsidis, N. (2010). New constructions of high-performance low-complexity convolutional codes. IEEE Transactions on Communications, 58(7), 1950–1961.

    Article  Google Scholar 

  13. Rosnes, E., & Ytrehus, O. (2004). Maximum length convolutional codes under a trellis complexity constraint. Journal of Complexity, 20, 372–408.

    Article  Google Scholar 

  14. Hug, F., Bocharova, I. E., Johannesson, R., & Kudryashov, B. (2009). Searching for high-rate convolutional codes via binary syndrome trellises. In Proceedings of IEEE international symposium on information theory (ISIT), Seoul, Korea (pp. 1358–1362).

  15. Ranpara, S., & Ha, D. (1999). A low-power Viterbi decoder design for wireless communications applications. In Proceedings of the international ASIC conference, Washington D.C., USA (pp. 1–5).

  16. Chan, M.-H., Lee, W.-T., & Chen, L.-G. (1996). IC design of an adaptive Viterbi decoder. IEEE Transactions on Consumer Electronics, 42(1), 52–62.

    Article  Google Scholar 

  17. Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based wireless sensor networks. Telecommunication Systems, 52(4), 2489–2502. doi:10.1007/s11235-011-9568-3.

    Article  Google Scholar 

  18. Pellenz, M. E., Souza, R. D., & Fonseca, M. S. P. (2010). Error control coding in wireless sensor networks. Telecommunication Systems, 44(1–2), 61–68.

    Article  Google Scholar 

  19. Hussain, S., Azim, A., & Park, J. H. (2009). Energy efficient virtual MIMO communication for wireless sensor networks. Telecommunication Systems, 42(1–2), 139–149.

    Article  Google Scholar 

  20. Chiasserini, C.-F., & Magli, E. (2004). Energy-efficient coding and error control for wireless video-surveillance networks. Telecommunication Systems, 26(2–4), 369–387.

    Article  Google Scholar 

  21. Labeau, F. (2003). Complexity evaluation of nonbinary SOVA for sectionalized trellises. In Proceedings of the 41st Allerton conference on communication, control and computing, Monticello, USA (pp. 1–5).

  22. Benchimol, I., Pimentel, C., Souza, R. D., & Uchôa-Filho, B. F. (2012). High-rate systematic recursive convolutional encoders: Minimal trellis and code search. EURASIP Journal on Advances in Signal Processing, 2012(243), 1–10.

    Google Scholar 

  23. Souza, R. D., Pimentel, C., & Muniz, D. (2012). Reduced complexity decoding of convolutional codes based on the M-Algorithm and the minimal trellis. Annals of Telecommunications, 67(11–12), 537–545.

  24. Bocharova, E., & Kudryashov, B. D. (1997). Rational rate punctured convolutional codes for soft-decision Viterbi decoding. IEEE Transactions on Information Theory, 43(4), 1305–1313.

    Article  Google Scholar 

  25. Cain, J. B., Clark, G. C, Jr, & Geist, J. M. (1979). Punctured convolutional codes of rate \((n-1)/n\) and simplified maximum likelihood decoding. IEEE Transactions on Information Theory, 25(1), 97–100.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by FAPEAM, FACEPE and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Benchimol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benchimol, I., Pimentel, C. & Souza, R.D. Low complexity trellis representations of convolutional codes via sectionalization of the minimal trellis. Telecommun Syst 59, 491–500 (2015). https://doi.org/10.1007/s11235-014-9909-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9909-0

Keywords

Navigation