Skip to main content
Log in

A dynamic TDMA-based MAC protocol with QoS guarantees for fully connected ad hoc networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper presents DT-MAC, a dynamic TDMA based medium access control (MAC) protocol designed to offer collision-free transmissions while providing QoS guarantees for different services in scalable fully connected ad hoc networks. In DT-MAC, a new time frame structure which consists of synchronization, request, assignment and data slots is put forward. In each frame, the number of slots and their lengths are adaptively adjusted according to the number of nodes and their services in the network. Meanwhile, a distributed frame synchronization method is proposed to provide synchronization guarantee for the nodes and generate a manager node for each frame to dynamically allocate the slots according to the QoS requirements of different services. Besides, by introducing request slot, DT-MAC can make nodes join or leave the network without conflicts. Simulation results show that DT-MAC performs better in providing QoS guarantees and accommodating the change of network scale compared with conventional TDMA-based MAC protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wang, N., & Lee, C. (2009). A reliable QoS aware routing protocol with slot assignment for mobile ad hoc networks. Journal of Network and Computer Applications, 32(6), 1153–1166.

    Article  Google Scholar 

  2. Chlamtac, I., Conti, M., & Liu, J. (2003). Mobile ad hoc networking: imperatives and challenges. Ad Hoc Networks, 1(1), 13–64.

    Article  Google Scholar 

  3. Niculescu, D., & Nath, B. (2003). DV based positioning in ad hoc networks. Telecommunication Systems, 22(1–4), 267–280.

    Article  Google Scholar 

  4. Ergen, M., Lee, D., Sengupta, R., & Varaiya, P. (2003). Wireless token ring protocol-performance comparison with IEEE 802.11. In ISCC’03, 2, 710–715.

  5. Ergen, M., Lee, D., Sengupta, R., & Varaiya, P. (2004). WTRP-wireless token ring protocol. IEEE Transactions on Vehicular Technology, 53(6), 1863–1881.

    Article  Google Scholar 

  6. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordinated function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  7. Li, Z., Nandi, S., & Gupta, A. K. (2005). ECS: an enhanced carrier sensing mechanism for wireless ad hoc networks. Computer Communications, 28(17), 1970–1984.

    Article  Google Scholar 

  8. Bruhadeshwar, B., Kothapalli, K., & Pulla, I.R. (2010). A fully dynamic and self-stabilizing TDMA scheme for wireless ad-hoc networks. In AINA’10, 511–518.

  9. Djukic, P., & Valaee, S. (2009). Delay aware link scheduling for multi-Hop TDMA wireless networks. IEEE/ACM Transaction on Networking, 17(3), 870–883.

    Article  Google Scholar 

  10. Salonodis, T., & Tassiulas, L. (2004). Asynchronous TDMA ad hoc networks: scheduling and performance. European Transactions on Telecommunications, 15(4), 391–403.

    Article  Google Scholar 

  11. Chlamtac, I., & Faragó, A. (1994). Making transmission schedules immune to topology changes in multihop packet radio networks. IEEE/ACM Transaction on Networking, 2(1), 23–29.

    Article  Google Scholar 

  12. Chlamtac, I., Faragó, A., & Zhang, H. (1997). Time-spread multiple-access (TSMA) protocols for multihop mobile radio networks. IEEE/ACM Transaction on Networking, 5(6), 804–812.

    Article  Google Scholar 

  13. Young, C.D. (1996). USAP: a unifying dynamic distributed multichannel TDMA slot assignment protocol. In IEEE MILCOM’96, 1, 235–239.

  14. Young, C.D. (1999). USAP multiple access: dynamic resource allocation for mobile multihop multichannel wireless networking. In IEEE MILCOM’99, 1, 271–275.

  15. Kanzaki, A., Uemukai, T., Hara, T., & Nishio, S. (2003). Dynamic TDMA slot assignment in ad hoc networks. In AINA’03, 330–339.

  16. Kanzaki, A., Hara, T., & Nishio, S. (2005). An adaptive TDMA slot assignment protocol in ad hoc sensor networks. In ACM SAC 2005, 1160–1165.

  17. Park, S., & Sy, D. (2008). Dynamic control slot scheduling algorithms for TDMA based mobile ad hoc networks. In IEEE MILCOM 2008, 1–7.

  18. Bao, L., & Garcia-Luna-Aceves, J. J. (2001). A new approach to channel access scheduling for ad hoc networks. In 7th annual international conference on Mobile computing and networking (MobiCom’01).

  19. Zhu, C., & Corson, M. S. (2001). A five-phase reservation protocol (FPRP) for mobile ad hoc networks. Wireless Networks, 7(4), 371–384.

    Article  Google Scholar 

  20. Zhu, C., & Corson, M. S. (2000). An evolutionary-TDMA scheduling protocol (E-TDMA) for mobile ad hoc networks. In ATIRP 2000.

  21. Kanzaki, A., Hara, T., & Nishio, S. (2007). An efficient TDMA slot assignment protocol in mobile ad hoc networks. In SAC’07, 891–895.

  22. Wu, M. (2007). Dynamic frame length channel assignment in wireless multihop ad hoc networks. Computer Communications, 30(18), 3832–3840.

    Article  Google Scholar 

  23. Cui, M., Yin, X., Nie, Y., Zhang, J., & Cao, L. (2008). An evolutionary dynamic slots assignment algorithm based on P-TDMA for mobile ad hoc networks. In ICCS 2008, 579–582.

  24. Li, W., Wang, S., & Wei, B. (2008). An evolutionary topology unaware TDMA MAC protocol for ad hoc networks. In ICC’08, 4825–4829.

  25. Myers, A. D., Záruba, G. V., & Syrotiuk, V. R. (2002). An adaptive generalized transmission protocol for ad hoc networks. Mobile Networks and Applications, 7(6), 493–502.

    Article  Google Scholar 

  26. Chlamtac, I., Farago, A., Myers, A.D., Syrotiuk, V.R., & Zaruba, G. (1999). ADAPT: a dynamic self-adjusting media access control protocol for ad hoc networks. In GLOBECOM’99, 1a, 11–15.

  27. Chlamtac, I., Myers, A. D., Syrotiuk, V. R., & Zaruba, G. (2000). An adaptive medium access control (MAC) protocol for reliable broadcast in wireless networks. In ICC 2000, 3, 1692–1696.

  28. Sharp, B.A., Grindrod, E.A., & Camm, D.A. (1995). Hybrid TDMA/CDMA protocol self-managing packet radio networks. In IEEE ICUPC’95, 929–933.

  29. Boggia, G., Camarda, P., Grieco, L.A., & Zacheo, G. (2008). An experimental evaluation on using TDMA over 802.11 MAC for wireless networked control systems. In ETFA 2008, 1157–1160.

  30. Koutsonikolas, D., Salonidis, T., Lundgren, H., LeGuyadec, P., Hu, Y.C., & Sheriff, I. (2008). TDM MAC protocol design and implementation for wireless mesh networks. In ACM CoNEXT.

  31. Panigrahi, D., & Raman, B. (2009). TDMA scheduling in long-distance WiFi networks. In INFOCOM 2009, 2931–2935.

  32. http://www.qualnet.com/ and related web pages it linked.

  33. Scalable Network Technologies Inc. (March, 2008). QualNet 4.5 Programmer’s Guide.

Download references

Acknowledgments

This work is supported in part by National Natural Science Foundation of China (Nos. 61100195, 61003116), Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20103218120022), Natural science foundation of Jiangsu Province of China (No. BK2010263), Fundation of Graduate Innovation Center in NUAA (No. kfjj120113), and Fundamental Research Funds for the Central Universities of China (No. NZ2012011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, L., Cai, S., Luo, C. et al. A dynamic TDMA-based MAC protocol with QoS guarantees for fully connected ad hoc networks. Telecommun Syst 60, 43–53 (2015). https://doi.org/10.1007/s11235-014-9920-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9920-5

Keywords

Navigation