Skip to main content
Log in

Hierarchical name system based on hybrid P2P for multimedia networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Multimedia networks distribute multimedia resources to end users who can enjoy movie, music or photo via this platform. The name system is one of the most important elements in multimedia networks, for it defines how to name a resource and how to find it. Borrowing the idea of data-centric networking, this paper describes an approach which achieves the name system design criterion. In naming, a combination of three entities is used to achieve security, scalability, and flexibility. In name resolution, a three-layer structure is proposed to achieve precise and semantic resolutions. Then replication and cache scheme is proposed, and retrieval latency is analyzed. Numerical simulation shows the performance of designed name system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rowstron, A., & Druschel, P. (2001). Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer system. In: IFIP/ACM International Conference on Distributed Systems Platforms, 2001.

  2. Koponen, T., Chawla, M., Chun, B. G., et al. (2007). A data-oriented (and beyond) network architecture. In: Proceedings of ACM SIGCOMM ’07, New York, NY, USA (pp. 181–192).

  3. Ahlgren, B., Ambrosio, M. D., Dannewitz, C., et al. (2008). Design considerations for a network of information. In: Proceedings of ReArch 2008.

  4. Mokhtarian, K., & Hefeeda, M. (2013). Capacity management of seed servers in peer-to-peer streaming systems with scalable video streams. IEEE Transactions on Multimedia (TMM), 15(1), 181–194.

    Article  Google Scholar 

  5. de Meer, H., Hummel, K. A., & Basmadjian, R. (2012). Future Internet services and architectures: Trends and visions. Telecommunication Systems, 51(4), 219–220.

    Article  Google Scholar 

  6. Kempf, J., Nikander, P., & Green, H. (2010). Innovation and the next generation internet. In: Proceedings of INFOCOM IEEE Conference on Computer Communications Workshops (pp. 1–6).

  7. Fotiou, N., Trossen, D., & Polyzos, G. C. (2012). Illustrating a publish-subscribe internet architecture. Telecommunication Systems, 51(4), 233–245.

    Article  Google Scholar 

  8. Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs, N. H., & Braynard, R. L. (2009). Networking named content. In: Proceedings of CoNEXT, December 2009.

  9. Wittevrongel, S., Fiems, D., & Walraevens, J. (2008). Modelling and performance evaluation of future generation internet networks. Telecommunication Systems, 39(2), 61–62.

    Article  Google Scholar 

  10. Elias, J., Martignon, F., & Carello, G. (2012). Very large-scale neighborhood search algorithms for the design of service overlay networks. Telecommunication Systems, 49(4), 391–408.

    Article  Google Scholar 

  11. Smetters, D., & Jacobson, V. (2009). Securing Network Content. Technical report, PARC, October 2009.

  12. Dannewitz, C., Golic, J., Ohlman, B., & Ahlgren, B. (2010). Secure naming for a network of information. In: Proceedings of 13th IEEE Global Internet Symposium. San Diego, USA, March 2010.

  13. Maymounkov, P., & Mazi‘eres, D. (2002). Kademlia: A peer-to-peer information system based on the xor metric. In: Proceedings of Workshop Peer-to-peer Systems (pp. 53–65). Springer, London, UK, 2002.

  14. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M., Dabek, F., et al. (2003). Chord: A scalable peer-to-peer lookup protocol for internet applications. Transactions on Networking, 11(1), 17–32.

    Article  Google Scholar 

  15. Ramasubramanian, V., & Sirer, E. G. (2004). The design and implementation of a next generation name service for the internet. In: SIGCOMM ’04: Proceedings of 2004 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (pp. 331–342). ACM, New York, USA, 2004.

  16. Artigas, M., Lopez, P., & Skarmeta. A. (2007). A comparative study of hierarchical DHT systems. In: IEEE Conference on Local Computer Networks (LCN) (pp. 325–333), October 2007.

  17. Artigas, M. S., Lopez, P. G., Ahullo, J. P., & Skarmeta, A. F. G. (2005). Cyclone: A novel design schema for hierarchical DHTs. In: Proceedings of IEEE International Conference on Peer-to-Peer Computing (pp. 49–56). IEEE Computer Society, Washington, DC, USA, 2005.

  18. Garces-Erice, L., Biersack, E. W., Felber, P., Ross, K. W., & Urvoy-Keller, G. (2003). Hierarchical peer-to-peer systems. Parallel Processing Letters, 13(4), 643–657.

    Article  Google Scholar 

  19. Mislove, A., & Druschel, P. (2004). Providing administrative control and autonomy in peer-to-peer overlays. In: Proceedings of 3rd Workshop on Peer-to-Peer Systems (IPTPS’04), February 2004.

  20. Ganesan, P., Gummadi, K., & Garcia-Molina, H. (2004). Canon in G major: Designing DHTs with hierarchical structure. In: Proceedings of Conference on Distributed Computing Systems (ICDCS’04) (pp. 263–272). IEEE Computer Society, Washington, DC, USA, 2004.

  21. Soghoian, C. & Stamm, S. (2010). Certified lies: Detecting and defeating government interception attacks against SSL. In: Proceedings of HotPETS, July 2010.

  22. Trossen, D., Särelä, M., & Sollins, K. (2010). Arguments for an information-centric internetworking architecture. SIGCOMM CCR, 40, April 2010.

  23. Jokela, P., Zahemszky, A., Arianfar, S., Nikander, P., & Esteve, C. (2009).Lipsin: Line speed publish/subscribe inter-networking. In: Proceedings of ACM SIGCOMM. Barcelona, Spain, August 2009.

  24. Ambrosio, M. D., Dannewitz, C., Karl, H., & Vercellone, V. (2011). MDHT: A hierarchical name resolution service for information-centric networks. In: Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking, ICN’11 (pp. 7–12), 2011.

  25. Walfish, M., Balakrishnan, H., & Shenker, S. (2004). Untangling the Web from DNS. In: Proceedings of NSDI, March 2004.

  26. Jun, W., & Worring, M. (2012). Efficient genre-specific semantic video indexing. IEEE Transactions on Multimedia (TMM), 14(2), 291–302.

    Article  Google Scholar 

  27. Simoes, J., & Magedanz, T. (2011). Contextualized user-centric multimedia delivery system for next generation networks. Telecommunication Systems, 48(3–4), 301–316.

    Article  Google Scholar 

  28. Ji, R., Duan, L.-Y., Chen, J., Xie, L., Yao, H., & Gao, W. (2013). Learning to distribute vocabulary indexing for scalable visual search. IEEE Transactions on Multimedia (TMM), 15(1), 153–166.

    Article  Google Scholar 

  29. Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M., Briggs, N., & Braynard, R. L. (2009). Networking named content. In: Proceedings of 5th ACM International Conference on emerging Networking EXperiments and Technologies (ACM CoNEXT), Rome, Italy, December 2009.

  30. Chen, Xu, Alfred, O., & Hero, I. I. I. (2012). Multimodal video indexing and retrieval using directed information. IEEE Transactions on Multimedia (TMM), 14(1), 3–16.

    Article  Google Scholar 

  31. Zha, Z., Wang, M., Zheng, Y. T., Yang, Y., Hong, Richang, & Chua, Tat Seng. (2012). Interactive video indexing with statistical active learning. IEEE Transactions on Multimedia (TMM), 14(1), 17–27.

    Article  Google Scholar 

  32. Ghodsi, A., Koponen, T., Rajahalme, J., Sarolahti, P., & Shenker, S. (2011). Naming in content-oriented architectures. In: Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking, ICN’11 (pp. 1–6), 2011.

  33. Cohen, E., & Shenker, S. (2002). Replication strategies in unstructured peer-to-peer networks. SIGCOMM Computer Communication Review, 32(4), 177–190.

    Article  Google Scholar 

  34. Sylvia, R., Paul, F., Mark, H., et al. (2001). A scalable content-addressable network. ACM SIGCOMM, 2001, San Diego, California, USA.

  35. Zhao, B. Y., Ling, H., Stribling, J., Rhea, S. C., Joseph, A. D., & Kubiatowicz, J. D. (2004). Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in Communications, 22(1), 41–53.

    Article  Google Scholar 

  36. Trossen, D. (2010). On long-lived routing identifiers. http://www.fp7-pursuit.eu/PursuitWeb/?p=244, October 2010.

  37. Open Source Community. Gnutella. In http://gnutella.wego.com/, 2001.

Download references

Acknowledgments

We gratefully acknowledge anonymous reviewers who read drafts and made many helpful suggestions. This work is supported by National Science Foundation Project of P. R. China (No. 61170014, No. 61202079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhong Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F., Zhou, X., Huang, D. et al. Hierarchical name system based on hybrid P2P for multimedia networks. Telecommun Syst 59, 393–400 (2015). https://doi.org/10.1007/s11235-014-9944-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9944-x

Keywords

Navigation