Skip to main content
Log in

Parallel TCP and scalable video coding for jitter free video transmission over MIMO wireless networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

There is a significant rise in demand for video transmission over 3G and 4G wireless networks due to the rising popularity of video streaming websites such as YouTube. The market for video streaming over wireless networks is expected to increase sharply in the future. Both of the two basic transport layer protocols without modifications are not suited for video transmission over wireless networks. UDP (user datagram protocol) suffers from inherent unreliability, resulting in corrupted video due to frequent corruption of packets. Inherent features of wireless networks such as noise, interference, etc. result in packet corruption. On the other hand, the performance of TCP (transmission control protocol) is worse than UDP (Thangaraj et al. in Telecommun Syst 45(4):303–312, 2010) because of frequently corrupted packets. Due to its reliable data transfer feature, TCP continuously retransmits the corrupted packet until successful reception at the receiver. This leads to jitter in video playback and poor end user quality of experience. Multiple TCP connections with appropriate optimization can lead to an increased efficiency of bandwidth utilization in comparison to single TCP based video transmission over wireless networks. It has been shown that multiple TCP connections enhance the video transmission and playback experience by providing reliable communication. The parallel TCP scheme proposed in this paper enhances the quality of video transmission and playback experience over MIMO wireless networks employing scalable hierarchical wavelet decomposition based video encoding with multiple TCP connections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Thangaraj, A., Zeng, Q.-A., & Li, X. (2010). Performance analysis of the IEEE 802.11e wireless networks with TCP ACK prioritization. Telecommunication Systems, 45(4), 303–312.

    Article  Google Scholar 

  2. Foschini, Gerard J. (1996). Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1(2), 41–59.

    Article  Google Scholar 

  3. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. New York: Cambridge University Press.

    Book  Google Scholar 

  4. Chen, M., & Zakhor, A. (2006). Multiple TFRC connections based rate control for wireless networks. IEEE Transactions on Multimedia, 8(5), 1045–1062.

    Article  Google Scholar 

  5. Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology, 17(9), 1103–1120.

    Article  Google Scholar 

  6. Develder, C., Lambert, P., Lancker, W., Moens, S., Walle, R., Nelis, J., et al. (2012). Delivering scalable video with QoS to the home. Telecommunication Systems, 49(1), 129–148.

    Article  Google Scholar 

  7. Postel, J. (1980). DOD standard transmission control protocol. SIGCOMM Computer Communication Review, 10(4), 52–132.

    Article  Google Scholar 

  8. Comer, D. (2000). Internetworking with TCP/IP: principles, protocols, and architecture. Upper Saddle River, NJ: Prentice-Hall Inc.

    Google Scholar 

  9. Stevens, W. (1997). TCP slow start, congestion avoidance, fast retransmit, and fast recovery algorithms. Washington, DC: RFC Editor.

    Book  Google Scholar 

  10. Paul, S., Ayanoglu, E., La Porta, T.F., Chen, K.-W.H., Sabnani, K.E., & Gitlin, R.D. (1995). An asymmetric protocol for digital cellular communications. In IEEE Computer Society Proceedings of the Fourteenth Annual Joint Conference of the IEEE Computer and Communication Societies (Vol. 3), INFOCOM ’95, pp. 1053–1062, Washington, DC, USA.

  11. Bakre, A., & Badrinath, B.R. (1995). I-TCP: Indirect TCP for mobile hosts. In Proceedings of the 15th International Conference on Distributed Computing Systems, pp. 136–143.

  12. Balakrishnan, H., Seshan, S., Amir, E., & Katz, R.H. (1995). Improving TCP/IP performance over wireless networks. In Proceedings of the 1st annual international conference on Mobile computing and networking, MobiCom ’95, pp. 2–11, New York. ACM.

  13. Papadimitriou, P., Tsaoussidis, V., & Zhang, C. (2010). End-to-end loss differentiation for video streaming with wireless link errors. Telecommunication Systems, 43(3–4), 295–312.

    Article  Google Scholar 

  14. Handley, M., Floyd, S., Padhye, J., & Widmer, J. (2003). TCP friendly rate control (TFRC): Protocol specification. Washington, DC: RFC Editor.

    Google Scholar 

  15. Lochin, E., Dairaine, L., & Jourjon, G. (2006). GTFRC, a TCP friendly QoS-aware rate control for diffserv assured service. Telecommunication Systems, 33(1–3), 3–21.

    Article  Google Scholar 

  16. Martijn Kuipers, B. W., Vaz, R. N., & Nunes, M. S. (2013). Video quality protection for real time video streams over wireless networks. Telecommunication Systems, 52(4), 2259–2270.

    Article  Google Scholar 

  17. Lettieri, P., & Srivastava, M.B. (1998). Adaptive frame length control for improving wireless link throughput, range, and energy efficiency. In INFOCOM ’98. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. Vol. 2, pp. 564–571

  18. Wan, H.-H., & Kwok, Y.-K. (2006). High data rate video transmission using parallel TCP connections: Approaches and performance evaluation. Journal of Supercomputing, 35(2), 119–139.

    Article  Google Scholar 

  19. Malliga, G.s., & Varughese, D.K. (2010). TCP - AP and LRED over single and multiple TCP flows in multihop wireless channel. In N. Meghanathan, S. Boumerdassi, N. Chaki & D. Nagamalai (Eds.), Recent trends in networks and communications, vol. 90 of communications in computer and information science, (pp. 400–410). Springer: Berlin Heidelberg.

  20. Lee, J., Gunter, D., Tierney, B., Allcock, B., Bester, J., Bresnahan, J., & Tuecke, S. (2001). Applied techniques for high bandwidth data transfers across wide area networks. url http://escholarship.org/uc/item/6zq8z3cr.

  21. Sivakumar, H., Bailey, S., & Grossman, R.L. (2000). Psockets: The case for application-level network striping for data intensive applications using high speed wide area networks. In IEEE Computer Society Proceedings of the 2000 ACM/IEEE conference on Supercomputing, Supercomputing ’00, Washington, DC.

  22. Jacobson, V. (1988). Congestion avoidance and control. SIGCOMM Computer Communication Review, 18(4), 314–329.

    Article  Google Scholar 

  23. Mathis, M., Semke, J., Mahdavi, J., & Ott, T. (1997). The macroscopic behavior of the TCP congestion avoidance algorithm. SIGCOMM Computer Communication Review, 27(3), 67–82.

    Article  Google Scholar 

  24. Margaliot, M. (2008). Pattern recognition (theodoridis, s. and koutroumbas, k.; 2006) [book reviews]. IEEE Transactions on Neural Networks, 19(2), 376–376.

    Article  Google Scholar 

  25. Ahmed, N., Natarajan, T., & Rao, K. R. (1974). Discrete cosine transform. IEEE Transactions on Computers, C–23(1), 90–93.

    Article  Google Scholar 

  26. Gray, R. M., & Neuhoff, D. L. (1998). Quantization. IEEE Transactions on Information Theory, 44(6), 2325–2383.

    Article  Google Scholar 

  27. Lee, J. (1998). Rate-distortion optimization of parametrized quantization matrix for MPEG-2 encoding. In Proceedings of the International Conference on Image Processing, 1998. ICIP 98, vol. 2, pp. 383–386.

  28. Hassoun, D. (2010). Dynamic streaming in flash media server 3.5, part 1: Overview of the new capabilities. url http://www.adobe.com/devnet/adobe-media-server/articles/dynstream_advanced_pt1.html.

  29. Kohler, E., Handley, M., & Floyd, S. (2006). Datagram congestion control protocol (DCCP). Washington, DC: RFC Editor.

    Book  Google Scholar 

  30. Kohler, E., Handley, M., & Floyd, S. (2006). Profile for datagram congestion control protocol (DCCP) congestion control ID 3: TCP-Friendly Rate Control (TFRC). Washington, DC: RFC Editor.

    Google Scholar 

  31. Kohler, E., & Floyd, S. (2006). Profile for datagram congestion control protocol (DCCP) congestion control ID 2: TCP-like congestion control. Washington, DC: RFC Editor.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Kumar Chaurasia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaurasia, A.K., Jagannatham, A.K. Parallel TCP and scalable video coding for jitter free video transmission over MIMO wireless networks. Telecommun Syst 61, 733–753 (2016). https://doi.org/10.1007/s11235-015-0064-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0064-z

Keywords

Navigation