Skip to main content
Log in

A generic buffer occupancy expression for stop-and-wait hybrid automatic repeat request protocol over unstable channels

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Recently, there has been a rapid progress in the field of wireless networks and mobile communications which makes the constraints on the used links clearly unconcealed. Wireless links are characterized by limited bandwidth and high latencies. Moreover, the bit-error-rate (BER) is very high in such environments for various reasons out of which weather conditions, cross-link interference, and mobility. High BER causes corruption in the data being transmitted over these channels. Therefore, convolutional encoding has been originated to be a professional means of communication over noisy environments. Sequential decoding, a category of convolutional codes, represents an efficient error detection and correction mechanism which attracts the attention for most of current researchers as for having a complexity that is dependent to the channel condition. In this paper, we propose a new queuing study over networking systems that make use of sequential decoders. Hence, the adopted flow and error control refer to stop-and-wait hybrid automatic repeat request. However, our queuing study is a novel extension to our prior work in which the lowest decoding complexity was fixed and did not account for the channel state. In other words, our proposed closed-form expression of the average buffer occupancy is totally generic and parameterized by not only channel condition and packet incoming rate, but also those that are automatically adapted to the channel conditions which include lower and upper bound decoding limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Darabkh, K. A., Jafar, I., Al Sukkar, G., Abandah, G., & Al-Zubi, R. (2012). An improved queuing model for packet retransmission policy and variable latency decoders. IET Communications Journal, 6(18), 3315–3328.

    Article  Google Scholar 

  2. Darabkh, K. A., Abu-Jaradeh, B., & Jafar, I. (2011). Incorporating automatic repeat request and thresholds with variable complexity decoding algorithms over wireless networks: Queuing analysis. IET Communications Journal, 5(10), 1377–1393.

    Article  Google Scholar 

  3. Tafazolli, R., Palazzo, S., Payaró, M., & Heath, R. W, Jr. (2015). Enabling 5G: Energy and spectrally efficient communication systems. Transactions on Emerging Telecommunications Technologies, 26(1), 1–2.

    Article  Google Scholar 

  4. Xiaohui, X., Wang, H., Feng, H., & Xing, C. (2015). Analysis of device-to-device communications with exclusion regions underlaying 5G networks. Transactions on Emerging Telecommunications Technologies, 26(1), 93–101.

    Article  Google Scholar 

  5. Wang, H., Zhao, Q., Guan, X., Jia, Q.-S., & Li, L. (2013). Reconfiguring networked infrastructures by adding wireless communication capabilities to selected nodes. IEEE Transactions on Wireless Communications, 12(9), 4518–4528.

    Article  Google Scholar 

  6. Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Yang, Yuan, D., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.

    Article  Google Scholar 

  7. Farhad Hossain, Md, Munasinghe, K. S., & Jamalipour, A. (2014). Traffic-aware two-dimensional dynamic network provisioning for energy-efficient cellular systems. Transactions on Emerging Telecommunications Technologies. doi:10.1002/ett.2872.

  8. Hossain, E., Rasti, M., Tabassum, H., & Abdelnasser, A. (2014). Evolution toward 5G multi-tier cellular wireless networks: An interference management perspective. IEEE Wireless Communications, 21(3), 118–127.

    Article  Google Scholar 

  9. Doré, J.-B., Berg, V., & Kténas, D. (2015). Channel estimation techniques for 5G cellular networks: FBMC and multiuser asynchronous fragmented spectrum scenario. Transactions on Emerging Telecommunications Technologies, 26(1), 15–30.

    Article  Google Scholar 

  10. Dinh-Van, S., Shin, Y., & Shin, O.-S. (2015). Resource allocation and power control based on user grouping for underlay device-to-device communications in cellular networks. Transactions on Emerging Telecommunications Technologies. doi:10.1002/ett.2920.

  11. Radack, S., & Kuhn, R. (2012). Protecting wireless local area networks. IT Professional, 14(6), 59–61.

    Article  Google Scholar 

  12. Al-Zubi, R., Hawa, M., Al-Sukkar, G., & Darabkh, K. A. (2014). Markov-based distributed approach for mitigating self-coexistence problem in IEEE 802.22 WRANs. The Computer Journal, 57(12), 1765–1775.

    Article  Google Scholar 

  13. Al-Mistarihi, M. F., Mohaisen, R., Sharaqa, A., Shurman, M. M., & Darabkh, K. A. (2015). Performance evaluation of multiuser diversity in multiuser two-hop cooperative multi-relay wireless networks using MRC over rayleigh fading channels. International Journal of Communication Systems, 28(1), 71–90.

    Article  Google Scholar 

  14. Politis, A., Hilas, C. S., & Papatsoris, A. D. (2014). Optimising no acknowledgment policy on WLANs supporting voice over internet protocol. Electronics Letters, 50(1), 51–52.

    Article  Google Scholar 

  15. Liou, Y.-S., Gau, R.-H., & Chang, C.-J. (2014). Dynamically tuning aggression levels for capacity-region-aware medium access control in wireless networks. IEEE Transactions on Wireless Communications, 13(4), 1766–1778.

    Article  Google Scholar 

  16. Al-Zubi, R., Krunz, M., Al-Sukkar, G., Hawa, M., & Darabkh, K. A. (2014). Packet recycling and delayed ACK for improving the performance of TCP over MANETs. Wireless Personal Communications, 75(1), 943–963.

    Article  Google Scholar 

  17. Darabkh, K. A., Ismail, S., Al-Shurman, M., Jafar, I., Alkhader, E., & Al-Mistarihi, M. (2012). Performance evaluation of selective and adaptive heads clustering algorithms over wireless sensor networks. International Journal of Network and Computer Applications, 35(6), 2068–2080.

    Article  Google Scholar 

  18. Li, R., Zhao, Z., Yuan, Z., Palicot, J., & Zhang, H. (2014). Adaptive multi-task compressive sensing for localisation in wireless local area networks. IET Communications, 8(10), 1736–1744.

    Article  Google Scholar 

  19. Rezha, F. P., & Shin, S. Y. (2014). Performance analysis of ISA100.11a under interference from an IEEE 802.11b wireless network. IEEE Transactions on Industrial Informatics, 10(2), 919–927.

    Article  Google Scholar 

  20. Darabkh, K. A., Awad, A. M., & Khalifeh, A. F. (2015). New video discarding policies for improving UDP performance over wired/wireless networks. International Journal of Network Management, 25(3), 181–202.

    Article  Google Scholar 

  21. Darabkh, K. A., Awad, A. M., & Khalifeh, A. F. (2014). Efficient PFD-based networking and buffering models for improving video quality over congested links. Wireless Personal Communications, 79(1), 293–320.

    Article  Google Scholar 

  22. Darabkh, K. A., & Aygun, R. (2011). Improving UDP performance using intermediate QoD-aware hop system for wired/wireless multimedia communication systems. International Journal of Network Management, 21(5), 432–454.

    Article  Google Scholar 

  23. Darabkh, K. A., Awad, A. M., & Khalifeh, A. F. (2013). Intelligent and selective video frames discarding policies for wireless networks, In Proceedings of the 2013 IEEE international symposium on multimedia (ISM 2013), Anaheim, California (pp. 297–300).

  24. Darabkh, K. A., & Alsukour, O. (2015). Novel protocols for improving the performance of ODMRP and EODMRP over mobile Ad hoc networks. International Journal of Distributed Sensor Networks 2015, Article ID, 348967, 1–18.

  25. Hawa, M., Darabkh, K. A., Khalaf, L. D. & Rahhal, J. S. Dynamic resource allocation using load estimation in distributed cognitive radio systems, AEÜ-International Journal of Electronics and Communications, In press.

  26. Darabkh, K. A. (2011). Evaluation of channel adaptive access point system with fano decoding. International Journal of Computer Mathematics, 88(5), 916–937.

    Article  Google Scholar 

  27. Darabkh, K. A., & Aygün, R. S. (2007). TCP traffic control evaluation and reduction over wireless networks using parallel sequential decoding mechanism, EURASIP. Journal on Wireless Communications and Networking, 2007, Article ID, 52492, 1–16.

  28. Davoli, F., & Mongelli, M. (2015). Neural approximations of analog joint source-channel coding. IEEE Signal Processing Letters, 22(4), 421–425.

    Article  Google Scholar 

  29. Fresnedo, O., Vazquez-Araujo, F. J., Castedo, L., & Garcia-Frias, J. (2014). Analogue joint source-channel coding for multiple input multiple output-orthogonal frequency division multiplexing systems. Transactions on Emerging Telecommunications Technologies. doi:10.1002/ett.2908.

  30. Johnson, S. J., Ong, L., & Kellett, C. M. (2011). Joint channel-network coding strategies for networks with low-complexity relays. Transactions on Emerging Telecommunications Technologies, 22(7), 396–406.

    Article  Google Scholar 

  31. Karbalayghareh, A., Nasiri-Kenari, M., & Hejazi, M. (2014). Convolutional network-coded cooperation in multi-source networks with a multi-antenna relay. IEEE Transactions on Wireless Communications, 13(8), 4323–4333.

    Article  Google Scholar 

  32. Gadioli La Guardia, G. (2014). On classical and quantum MDS-convolutional BCH codes. IEEE Transactions on Information Theory, 60(1), 304–312.

    Article  Google Scholar 

  33. Baldi, M., Cancellieri, G., & Chiaraluce, F. (2014). Array convolutional low-density parity-check codes. IEEE Communications Letters, 18(2), 336–339.

    Article  Google Scholar 

  34. Maymon, S., & Eldar, Y. C. (2015). The viterbi algorithm for subset selection. IEEE Signal Processing Letters, 22(5), 524–528.

    Article  Google Scholar 

  35. Zhuoran, X., Kam, P.-Y., & Changyuan, Y. (2014). Adaptive maximum likelihood sequence detection for QPSK coherent optical communication system. IEEE Photonics Technology Letters, 26(6), 583–586.

    Article  Google Scholar 

  36. Ben Slimane, E., Jarboui, S., & Bouallegue, A. (2013). An improved differential space-time block coding scheme based on viterbi algorithm. IEEE Communications Letters, 17(9), 1707–1709.

    Article  Google Scholar 

  37. Pelchat, E., & Poulin, D. (2013). Degenerate viterbi decoding. IEEE Transactions on Information Theory, 59(6), 3915–3921.

    Article  Google Scholar 

  38. Lin, S., & Costello, D. J. (2004). Error control coding: Fundamentals and applications. Englewood Cliffs: Pearson Education.

    Google Scholar 

  39. Moreira, J. C., & Farrell, P. G. (2006). Essentials of error-control coding. Chichester: Wiley.

    Book  Google Scholar 

  40. Abediseid, W. & Alouini, M.-S. (2013). Performance-complexity tradeoff in sequential decoding for the unconstrained AWGN channel, In Proceedings of 2013 IEEE international conference on communications (ICC), Budapest (pp. 3090–3094).

  41. Abediseid, W., & Alouini, M. (2013). On lattice sequential decoding for the unconstrained AWGN channel. IEEE Transactions on Communications, 61(6), 2446–2456.

    Article  Google Scholar 

  42. Gridasov, R., Bakhtin, A., Pertsev, L. & Timoshenko, A. (2013). Analisys of the behavior of sequential Fano decoder for convolutional codes, In Proceedings of 2013 5th international congress on ultra modern telecommunications and control systems and workshops (ICUMT), Almaty (pp. 100–105).

  43. Xu, R., & Morris, K. (2012). High throughput sequential decoding with state estimation. IET Communications, 6(13), 2033–2039.

    Article  Google Scholar 

  44. Darabkh, K.A. & Pan, W.D. (2006) Stationary queue-size distribution for variable complexity sequential decoders with large timeout. In Proceedings of the 44th ACM Southeast Conference, Melbourne, Florida (pp. 331–336).

  45. Darabkh, K. A. & Aygun, R. S. (June 2006). Performance evaluation of sequential decoding system for UDP-based systems for wireless multimedia networks, Proceedings of 2006 international conference on wireless networks (ICWN’06), Las Vegas, Nevada (pp. 365–371).

  46. Makki, B. & Eriksson, T. (2012) Interference-free spectrum sharing using a sequential decoder at the primary user, In Proceedings of 2012 IEEE 13th international workshop on signal processing advances in wireless communications (SPAWC), Cesme (pp.154–158).

  47. Li, T., Leith, D., & Malone, D. (2011). Buffer sizing for 802.11-based networks. IEEE/ACM Transactions on Networking, 19(1), 156–169.

    Article  Google Scholar 

  48. Jagannathan, K., & Modiano, E. (2013). The impact of queue length information on buffer overflow in parallel queues. IEEE Transactions on Information Theory, 59(10), 6393–6404.

    Article  Google Scholar 

  49. Chan, S. C. F., Chan, K. M., Liu, K., & Lee, J. Y. B. (2014). On queue length and link buffer size estimation in 3G/4G mobile data networks. IEEE Transactions on Mobile Computing, 13(6), 1298–1311.

    Article  Google Scholar 

  50. Darabkh, K. A. (2010). Queuing analysis and simulation of wireless access and end point systems using fano decoding. Journal of Communications, 5(7), 551–561.

  51. Darabkh, K. A. & Abu-Jaradeh, B. (2010). Bounded fano decoders over intermediate hops excluding packet retransmission, In Proceedings of IEEE 24th international conference on advanced information networking and applications (AINA 2010), Perth (pp. 299–303).

  52. Byun, H.-J., & Lim, J.-T. (2005). Explicit window adaptation algorithm over TCP wireless networks. IEE Proceedings-Communications, 152(5), 691–696.

    Article  Google Scholar 

  53. Seferoglu, H., & Markopoulou, A. (2014). Network coding-aware queue management for TCP flows over coded wireless networks. IEEE/ACM Transactions on Networking, 22(4), 1297–1310.

    Article  Google Scholar 

  54. Lee, Jinsung, Lee, Hyang-Won, Yi, Yung, & Chong, Song. (2012). Improving TCP performance over optimal CSMA in wireless multi-hop networks. IEEE Communications Letters, 16(9), 1388–1391.

    Article  Google Scholar 

  55. Hashimoto, M., Hasegawa, G., & Murata, M. (2014). An analysis of energy consumption for TCP data transfer with burst transmission over a wireless LAN. International Journal of Communication Systems. doi:10.1002/dac.2832.

  56. Ren, F., & Lin, C. (2011). Modeling and improving TCP performance over cellular link with variable bandwidth. IEEE Transactions on Mobile Computing, 10(8), 1057–1070.

    Article  Google Scholar 

  57. Shin, K., Kim, J., & Choi, S. B. (2011). Loss recovery scheme for TCP using MAC MIB over wireless access networks. IEEE Communications Letters, 15(10), 1059–1061.

    Article  Google Scholar 

  58. Huang, J., Wang, J., & Ye, J. (2014). A buffer management algorithm for improving up/down transmission congestion protocol fairness in IEEE 802.11 wireless local area networks. International Journal of Communication Systems, 27(10), 2228–2240.

    Article  Google Scholar 

  59. Cheng, R.-S., & Deng, D.-J. (2014). Congestion control with dynamic threshold adaptation and cross-layer response for TCP Vegas over IEEE 802.11 wireless networks. International Journal of Communication Systems, 27(11), 2918–2930.

    Google Scholar 

  60. Darabkh, K. A. Fast and upper bounded fano decoding algorithm: queuing analysis. Transactions on Emerging Telecommunications Technologies (in press)

  61. Darabkh, K. A. & Aygun, R. S. (2006) Quality of service and performance evaluation of congestion control for multimedia networking, In Proceedings of 2006 international conference on internet computing (ICOMP’06), Las Vegas, Nevada (pp. 217–223)

  62. Darabkh K. A. & Abu-Jaradeh, B. (2010). Buffering study over intermediate hops including packet retransmission, In Proceedings of IEEE international conference on multimedia computing and information technology (MCIT-2010), Sharjah (pp. 45–48).

  63. Darabkh, K. A., Khalifeh, A., Naser, M. & Al-Qaralleh, E. (2012). New arriving process for convolutional codes with adaptive behavior, In Proceedings of IEEE/SSD’12 multi-conference on systems, signals, and devices, Chemnitz (pp. 1–6).

  64. Meyn, S. P., & Tweedie, R. L. (2005). Markov chains and stochastic stability. Cambridge: Cambridge University Press.

    Google Scholar 

  65. Darabkh K. A. & Aygun, R. S. (2006) Quality of service evaluation of error control for TCP/IP-based systems in packet switching ATM networks, In Proceedings of 2006 international conference on internet computing (ICOMP’06), Las Vegas, Nevada (pp. 243–248)

  66. Cross, D., & Harris, C. M. (1998). Fundamentals of queuing theory. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid A. Darabkh.

Appendices

Appendix 1: Proofs of Lemma 1 and Corollaries 1 and 2

Using (3) in (7), we can write \(p_{1,T-1} \) as

$$\begin{aligned} p_{1,T-1} =(1-\lambda )^{T-1}(1-F_{T-1} )p_{1,0} . \end{aligned}$$
(52)

Substituting (52) into (6) (specifically in place of \(p_{1,j} \) where \(T-1=j)\) and using (1), (6) can be written as

$$\begin{aligned} \lambda p_{0,0} =\sum _{j=M-1}^{T-1} {c_{j+1} (1-\lambda )^{j+1}p_{1,0} } . \end{aligned}$$
(53)

After writing for \(p_{1,0} \), (52) can be written as

$$\begin{aligned} p_{1,T-1} =\frac{\lambda (1-\lambda )^{T-1}(1-F_{T-1} )}{\sum _{\mathrm{j}=\hbox {M}-1}^{\hbox {T}-1} {c_{j+1} (1-\lambda )^{j+1}} }p_{0,0.} \end{aligned}$$
(54)

Substituting (52) into (12) and utilizing (3) give

$$\begin{aligned} p_{0,0,1,1} =(1-\lambda )^{T}(1-F_T )p_{1,0} . \end{aligned}$$
(55)

Extracting \(p_{1,0}\) from (53) and using it in (55) produce

$$\begin{aligned} p_{0,0,1,1} =\alpha p_{0,0} , \end{aligned}$$
(56)

where,

$$\begin{aligned} \alpha =\frac{\lambda \hbox {(1-}\lambda )^{\hbox {T}}(1-F_T )}{{\sum \nolimits _{\mathrm{j}=M-\mathrm{{1}}}^{\mathrm{T}-1}} {c_{j+1} (1-\lambda \hbox {)}^{j+1}}}. \end{aligned}$$
(57)

Substituting (54) into (17) provides

$$\begin{aligned} p_{0,0,1,2} =(1-\lambda )\alpha \hbox { }p_{0,0} . \end{aligned}$$
(58)

Similarly, (18) can be written as

$$\begin{aligned} p_{1,0,1,2} =\lambda \alpha p_{0,0} . \end{aligned}$$
(59)

Appendix 2: Proofs of Theorem 1, Corollaries (3)–(5), Lemma 2, and Corollary 6

Referring to (22), we find that

$$\begin{aligned} P_0 (z)=p_{1,0} z+\sum _{n=2}^\infty {p_{n,0} z^{n}.} \end{aligned}$$
(60)

Substituting (9) and (10) into (60) and rearranging yield

$$\begin{aligned} P_0 (z)= & {} \sum _{j=M-1}^{T-1} \mu _{j-(M-2)}\nonumber \\&\left[ {\lambda \sum _{n=1}^\infty {p_{n,j} } z^{n}+(1-\lambda )\sum _{n=1}^\infty {p_{n+1,j} } z^{n}} \right] \nonumber \\&+\,\lambda zp_{0,0} +p_{0,0,1,2} z. \end{aligned}$$
(61)

Using \(\sum _{n=1}^\infty {p_{n+1,j} z^{n}} =\frac{1}{z}\left( {P_j (z)-p_{1,j} z} \right) \) and accordingly (6) provide

$$\begin{aligned} P_0 (z)= & {} \frac{f(z)}{z}\sum _{j=M-1}^{T-1} {\mu _{j-(M-2)} P_j (z)}\nonumber \\&+\,\lambda (z-1)p_{0,0} +p_{0,0,1,2} z. \end{aligned}$$
(62)

For the derivation of\(P_1 (z)\), we can write (22) as

$$\begin{aligned} P_1 (z)=p_{1,1} z+p_{2,1} z^{2}+\sum _{n=3}^\infty {p_{n,1} z^{n}.} \end{aligned}$$
(63)

Substituting (7), (15), and (16) into (63) and rearranging yield

$$\begin{aligned} P_1 (z)=\sum _{n=1}^\infty {(1-\lambda )p_{n,0} z^{n}} +\sum _{n=2}^\infty {\lambda p_{n-1,0} z^{n}+p_{1,0,1,2} z^{2}.}\nonumber \\ \end{aligned}$$
(64)

Using \(\sum _{n=2}^\infty {p_{n-1,0} z^{n}} =z\sum _{n=2}^\infty {p_{n-1,0} z^{n-1}} =zP_0 (z)\) gives

$$\begin{aligned} P_1 (z)=f(z)P_0 (z)+p_{1,0,1,2} z^{2}. \end{aligned}$$
(65)

As for deriving\(P_2 (z)\), (22) can be written as

$$\begin{aligned} P_2 (z)=p_{1,2} z+\sum _{n=2}^\infty {p_{n,2} z^{n}.} \end{aligned}$$
(66)

Substituting (7) and (11) into (66), rearranging, and simplifying, we acquire

$$\begin{aligned} P_2 (z)=f(z)P_1 (z)+zP_{1,1,2} (z). \end{aligned}$$
(67)

Using (65), we come into the possession of

$$\begin{aligned} P_2 (z)=f(z)^{2}P_0 (z)+f(z)p_{1,0,1,2} z^{2}+zP_{1,1,2} (z). \end{aligned}$$
(68)

To derive the general form (i.e., \(P_j (z))\) where \(M-1\ge j\ge 3\) at \(M >3\), we use

$$\begin{aligned} P_j (z)=p_{1,j} z+\sum _{n=2}^\infty {p_{n,j} z^{n}.} \end{aligned}$$
(69)

Substituting (7) and (8) into (69) and rearranging, we obtain

$$\begin{aligned} P_j (z)=f(z)P_{j-1} (z). \end{aligned}$$
(70)

Using (2), we can write (69) recursively as

$$\begin{aligned} P_j (z)=f(z)^{j-2}P_2 (z). \end{aligned}$$
(71)

Utilizing (68), we attain

$$\begin{aligned} P_j (z)=f(z)^{j-2}\left[ {f(z)^{2}P_0 (z)+f(z)p_{1,0,1,2} z^{2}+zP_{1,1,2} (z)} \right] \nonumber \\ \end{aligned}$$
(72)

About the general form where \(j\ge M\), (22) can be written after using (7) and (8) as

$$\begin{aligned} P_j (z)=(1-\mu _{j-(M-1)} )f(z)P_{j-1} (z). \end{aligned}$$
(73)

Using (3), we can write (73) recursively as

$$\begin{aligned} P_j (z)=(1-F_j )f(z)^{j-(M-1)}P_{M-1} (z). \end{aligned}$$
(74)

Using (71), we can find that

$$\begin{aligned} P_{M-1} (z)=f(z)^{M-3}P_2 (z). \end{aligned}$$
(75)

Substituting (68) into (75) and consequently into (74), we get

$$\begin{aligned} P_j (z)= & {} (1-F_j )f(z)^{j-2}\nonumber \\&\left[ {f^{2}(z)P_0 (z)+f(z)p_{1,0,1,2} z^{2}+zP_{1,1,2} (z)} \right] .\nonumber \\ \end{aligned}$$
(76)

As far as \(P_{0,1,1} (z)\) is concerned, we use (12) and (13) in (23) as follows

$$\begin{aligned} P_{0,1,1} (z)= & {} \left( {1-\mu _{T-(M-1)} } \right) \nonumber \\&\left[ {(1-\lambda )\sum _{n=1}^\infty {p_{n+1,T-1} z^{n}+\lambda \sum _{n=1}^\infty {p_{n,T-1} z^{n}} } } \right] .\nonumber \\ \end{aligned}$$
(77)

Using \(\sum _{n=1}^\infty {p_{n+1,T-1} z^{n}} =\frac{1}{z}\left( {P_{T-1} (z)-p_{1,T-1} z} \right) \) and simplifying yield

$$\begin{aligned} P_{0,1,1} (z)= & {} \left( {1-\mu _{T-(M-1)} } \right) \nonumber \\&\left[ {\frac{f(z)}{z}P_{T-1} (z)-(1-\lambda )p_{1,T-1} } \right] . \end{aligned}$$
(78)

Substituting (76) into (78) (particularly in place of \(P_{T-1} (z)\) where \(j=T-1)\) gives

$$\begin{aligned} P_{0,1,1} (z)= & {} \left( {1-\mu _{T-(M-1)} } \right) \frac{f(z)}{z}\nonumber \\&\left[ (1-F_{T-1} )f(z)^{T-2}\left( f(z)P_0 (z)\right. \right. \nonumber \\&\quad \left. \left. +p_{1,0,1,2}z^{2}+zP_{0,1,1} (z) \right) \right] \nonumber \\&-\,\left( {1-\mu _{T-(M-1)} } \right) (1-\lambda )p_{1,T-1} . \end{aligned}$$
(79)

After rearrangement and using (3), (54), and (59), we get

$$\begin{aligned} P_{0,1,1} (z)=\frac{\left( {1-F_T } \right) f(z)^{T-1}\left[ {f(z)P_0 (z)+p_{1,0,1,2} z^{2}} \right] -zp_{0,0,1,1} }{z\left[ {1-f(z)^{T-1}(1-F_T )} \right] }.\nonumber \\ \end{aligned}$$
(80)

Concerning the derivation of \(P_{1,1,2} (z)\), (24) can be written after considering (19) and (20) as

$$\begin{aligned} P_{1,1,2} (z)=\sum _{n=1}^\infty {(1-\lambda )p_{n,0,1,1} z^{n}} +\sum _{n=2}^\infty {\lambda p_{n-1,0,1,1} z^{n}.}\nonumber \\ \end{aligned}$$
(81)

Using \(\sum _{n=2}^\infty {\lambda p_{n-1,0,1,1} z^{n}=zP_{0,1,1} (z)} \), we obtain

$$\begin{aligned} P_{1,1,2} (z)=f(z)P_{0,1,1} (z). \end{aligned}$$
(82)

Referring to (62), it can be rewritten as

$$\begin{aligned} P_0 (z)= & {} \frac{1}{z}\mu _1 f(z)P_{M-1} (z)+\frac{1}{z}\sum _{j=M}^{T-1} {\mu _{j-(M-2)} f(z)P_j (z)}\nonumber \\&+\,\lambda (z-1)p_{0,0} +p_{0,0,1,2} z. \end{aligned}$$
(83)

Simplifying the summation part and using (1) and (76), we achieve

$$\begin{aligned}&\sum _{j=M}^{T-1} {\mu _{j-(M-2)} f(z)P_j (z)} =\left( {C(z)-c_M f(z)^{M}} \right) \nonumber \\&\quad \left[ {P_0 (z)+p_{1,0,1,2} \frac{z^{2}}{f(z)}+\frac{z}{f(z)}P_{0,1,1} (z)} \right] . \end{aligned}$$
(84)

where,

$$\begin{aligned} C(z)=\sum _{j=M-1}^{T-1} {c_{j+1} f(z)^{j+1}.} \end{aligned}$$
(85)

Consequently, (83) can be written as

$$\begin{aligned} P_0 (z)= & {} \frac{1}{z}\mu _1 f(z)P_{M-1} (z)+\frac{1}{z}\left( {C(z)-c_M f(z)^{M}} \right) \nonumber \\&\left[ {P_0 (z)+p_{1,0,1,2} \frac{z^{2}}{f(z)}+\frac{z}{f(z)}P_{0,1,1} (z)} \right] \nonumber \\&+\,\lambda (z-1)p_{0,0} +p_{0,0,1,2} z. \end{aligned}$$
(86)

Substituting (68) into (75) and using it in (86) and considering (82), we come into

$$\begin{aligned}&P_0 (z)\left( {z-\mu _1 f(z)^{M}-\left( {C(z)-c_M f(z)^{M}} \right) } \right) \nonumber \\&\quad =z^{2}\mu _1 f(z)^{M-1}p_{1,0,1,2}\nonumber \\&\qquad +\,\frac{z^{2}}{f(z)}\left( {C(z)-c_M f(z)^{M}} \right) p_{1,0,1,2} \nonumber \\&\qquad +\,\lambda z(z-1)p_{0,0} +p_{0,0,1,2} z^{2}\nonumber \\&\qquad +\,\left( \frac{z}{f(z)}\left( {C(z)-c_M f(z)^{M}} \right) \right. \nonumber \\&\qquad \left. +\,\mu _1zf(z)^{M-1} \right) P_{0,1,1} (z). \end{aligned}$$
(87)

Using (1) and (2), we can show that

$$\begin{aligned} \mu _1 =c_M . \end{aligned}$$
(88)

Presently, substituting (56) and (59) into (80) and accordingly the expression of \(P_{0,1,1} (z)\)into (87) after utilizing (88) reach

$$\begin{aligned} P_0 (z)=g(z)p_{0,0} , \end{aligned}$$
(89)

where,

$$\begin{aligned} g(z)=\frac{g_1 (z)}{f(z)\left( {z-C(z)} \right) +zf(z)^{T}(F_T -1)}, \end{aligned}$$
(90)

and,

$$\begin{aligned} g_1 (z)= & {} -\left( {\left( {\left( {\alpha (\lambda -1)z+\lambda (1-z)} \right) f(z)+\alpha (1-\lambda z)C(z)} \right. } \right. \nonumber \\&+\,\left( {\alpha (\lambda -1)z+\lambda (1-z)} \right) f(z)^{T}\left. {\left. {(F_T -1)} \right) z} \right) \nonumber \\ \end{aligned}$$
(91)

Substituting (56), (59), and (89) into (80), we obtain

$$\begin{aligned} P_{0,1,1} (z)=h(z)p_{0,0} , \end{aligned}$$
(92)

where,

$$\begin{aligned} h(z)=\frac{f(z)^{T-1}(1-F_T )\left[ {f(z)g(z)+\lambda \alpha z^{2}} \right] -z\alpha }{\left[ {1-f(z)^{T-1}(1-F_T )} \right] z}. \end{aligned}$$
(93)

On the other hand, using (92) in (82) provides

$$\begin{aligned} P_{1,1,2} (z)=f(z)h(z)p_{0,0} . \end{aligned}$$
(94)

Appendix 3: A Proof of Lemma 3

Alluding to (21) and utilizing the fact that \(P(1)=1\), we get

$$\begin{aligned}&p_{0,0,1,1} +p_{0,0,1,2} +p_{1,0,1,2} +\sum _{k=0}^{T-1} P_k (1)\nonumber \\&\quad +P_{0,1,1} (1)+P_{1,1,2} (1) +p_{0,0} =1. \end{aligned}$$
(95)

Substituting \(z=1\) into (89) induces

$$\begin{aligned} P_0 (1)=g(1)p_{0,0} . \end{aligned}$$
(96)

Having \(z=1\) in (90) gives 0/0, then we apply L’Hospital’s rule as

$$\begin{aligned} g(1)=\mathop {\lim }\limits _{z\rightarrow 1} \frac{g_1 (z)}{\left( {z-C(z)} \right) f(z)+(F_T -1)zf(z)^{T}}, \end{aligned}$$
(97)

After reordering and simplifying, we have

$$\begin{aligned} g(1)=\frac{\alpha (\lambda -1)\left( {\lambda (T-1)+\rho } \right) +F_T \left( {\lambda +\alpha \left( {1-T\lambda (\lambda -1)} \right) } \right) }{\lambda (1-T)-\rho +F_T \left( {1+\lambda (T-1)} \right) },\nonumber \\ \end{aligned}$$
(98)

where,

$$\begin{aligned} \rho =\lambda \sum _{j=M-1}^{T-1} {(j+1)c_{j+1} } . \end{aligned}$$
(99)

Moreover, substituting \(z=1\) into (65), (68), (72), and (76), and accordingly their expressions into (95) along with (25), (27), (28), and (96), we obtain

$$\begin{aligned} p_{0,0} =\frac{1}{1+2(g(1)+h(1)+\alpha )+\lambda \alpha +(g(1)+\lambda \alpha +h(1))(\omega +M-2)},\nonumber \\ \end{aligned}$$
(100)

where,

$$\begin{aligned} \omega =\sum _{j=M}^{T-1} {(1-F_j )} . \end{aligned}$$
(101)

Appendix 4: A Proof of Preposition 1

The derivative of (30) can be found as follows

$$\begin{aligned} {g}'(z)=\frac{a_1 (z)+a_2 (z)+a_3 (z)+a_4 (z)+a_5 (z)}{\left( {f(z)\left( {z-C(z)} \right) +zf(z)^{T}(F_T -1)} \right) ^{2}}, \end{aligned}$$
(102)

where,

$$\begin{aligned} a_1 (z)= & {} -\left( {\alpha (\lambda -1)-\lambda } \right) z^{2}f(z)^{2T}(F_T -1)^{2}\nonumber \\&-\,\alpha z(\lambda z-1)\left( {z-C(z)} \right) C(z){f}'(z)\nonumber \\&-\,\alpha T(\lambda z-1)(F_T -1){f}'(z)z^{2}f(z)^{T-1}C(z), \nonumber \\ \end{aligned}$$
(103)
$$\begin{aligned} a_2 (z)= & {} (F_T -1)\left( C(z)\left( \alpha \lambda z+(T-1)\left( -\alpha z+\lambda \right. \right. \right. \nonumber \\&+\,\left. \left. \left. (\alpha -1)\lambda z \right) {f}'(z) \right) \alpha z(\lambda z-1){C}'(z) \right) zf(z)^{T}, \nonumber \\\end{aligned}$$
(104)
$$\begin{aligned} a_3 (z)= & {} \alpha \left( C(z)\left( {\lambda z^{2}+C(z)-2\lambda zC(z)} \right) \right. \nonumber \\&+\,\left. z^{2}(\lambda z-1){C}'(z) \right) f(z), \end{aligned}$$
(105)
$$\begin{aligned} a_4 (z)= & {} (F_T -1)\left( {-\left( {-2\alpha z+\lambda +2\lambda (\alpha -1)z} \right) C(z)} \right. \nonumber \\&\left. +z\left( -2\alpha z+2\lambda (\alpha -1)z+\left( -\alpha z+\lambda \right. \right. \right. \nonumber \\&+\,\left. \left. \left. \lambda (\alpha -1)z \right) {C}'(z) \right) \right) f(z)^{T+1}, \end{aligned}$$
(106)

and,

$$\begin{aligned} a_5 (z)= & {} \left( \left( {-2\alpha z+\lambda +2\lambda (\alpha -1)z} \right) C(z)\right. \nonumber \\&+\,z\left( {z\left( {\alpha +\lambda (1-\alpha )} \right) } f(z)^{2} \right. \nonumber \\&\left. \left. +\left( -\lambda +z\left( \alpha +\lambda (1-\alpha ) \right) \right) {C}'(z) \right) \right) . \end{aligned}$$
(107)

Substituting \(z=1\) into (102) yields

$$\begin{aligned} {g}'(1)=\frac{a_1 (1)+a_2 (1)+a_3 (1)+a_4 (1)+a_5 (1)}{\left( {f(1)\left( {1-C(1)} \right) +f(1)^{T}(F_T -1)} \right) ^{2}}. \end{aligned}$$
(108)

Taking into consideration that \(f(1)=1\) and \({f}'(1)=\lambda \) and using (2) and (85), we get

$$\begin{aligned} C(1)=F_T . \end{aligned}$$
(109)

Taking the first derivation of (85) and then substituting for \(z=1\), we obtain

$$\begin{aligned} {C}'(1)=\lambda \sum _{j=M-1}^{T-1} {(j+1)c_{j+1} =\rho .} \end{aligned}$$
(110)

Substituting \(z=1\) into (103)–(107) and utilizing (109)–(110), we write

$$\begin{aligned} a_1 (1)= & {} (F_T -1)\left( \alpha (\lambda -1)-\lambda \right. \nonumber \\&\left. +\,F_T \left( {\lambda -\alpha (\lambda -1)\left( {1+\lambda (T-1)} \right) } \right) \right) , \end{aligned}$$
(111)
$$\begin{aligned} a_2 (1)= & {} (F_T -1)\left( \alpha \rho \left( {\lambda -1} \right) \right. \nonumber \\&+\,\left. \alpha \lambda F_T \left( {2+T(\lambda -1)-\lambda } \right) \right) , \end{aligned}$$
(112)
$$\begin{aligned} a_3 (1)= & {} \alpha \left( \rho \left( {\lambda -1} \right) +F_T \left( {\lambda +F_T (1-2\lambda )} \right) \right) , \end{aligned}$$
(113)
$$\begin{aligned} a_4 (1)= & {} (F_T -1)\left( 2\lambda -\alpha (\lambda -1)(2+\rho )\right. \nonumber \\&\left. +\,F_T \left( {2\alpha (\lambda -1)-\lambda } \right) \right) , \end{aligned}$$
(114)

and,

$$\begin{aligned} a_5 (1)=\lambda -\alpha \left( {\lambda -1} \right) (1+\rho )+F_T \left( {2\alpha \left( {\lambda -1} \right) -\lambda } \right) .\nonumber \\ \end{aligned}$$
(115)

Substituting (109), (111)–(115) into (108) yields 0/0. Hence, we apply L’Hospital’s rule to (102) as follows

$$\begin{aligned} {g}'(z)=\frac{{a}'_1 (z)+{a}'_2 (z)+{a}'_3 (z)+{a}'_4 (z)+{a}'_5 (z)}{2\left( {f(z)\left( {z-C(z)} \right) +zf(z)^{T}(F_T -1)} \right) \left( {f(z)\left( {z-C(z)} \right) +zf(z)^{T}(F_T -1)} \right) ^{\prime }}, \end{aligned}$$
(116)

Substituting \(z=1\), we get

$$\begin{aligned} {g}'(1)=\frac{{a}'_1 (1)+{a}'_2 (1)+{a}'_3 (1)+{a}'_4 (1)+{a}'_5 (1)}{2\left( {f(1)\left( {1-C(1)} \right) +f(1)^{T}(F_T -1)} \right) \left( {\lambda \left( {1-T} \right) -\rho +F_T \left( {1+(T-1)\lambda } \right) } \right) }, \end{aligned}$$
(117)

Examining the derivative of (103)–(107), applying \(z=1\), and utilizing (109)–(110) give

$$\begin{aligned} {a}'_1 (1)= & {} 2\lambda (1+\lambda T)+\alpha (\lambda -1)( {-2+T\lambda (\rho -2)-\lambda \rho } )\nonumber \\&+\,F_T ( {-4\lambda (1+\lambda T)+\alpha ( {-4+T\lambda ^{3}(T-1)} } \nonumber \\&+\,\lambda ( {6+T(\rho -6)-2\rho } )-\lambda ^{2} ( 3-2\rho \nonumber \\&+\,T({-8+T+\rho })))\nonumber \\&+\,F_T ( 2\lambda (1+\lambda T)+\alpha ( 2+\lambda ( -3+2\lambda \nonumber \\&+\,T( {4+\lambda ( {-6+T(1-\lambda )+\lambda })}))))), \end{aligned}$$
(118)
$$\begin{aligned} {a}'_2 (1)= & {} (F_T -1)( {\alpha \rho ( {-2+\lambda ( {5+2T(\lambda -1)-\lambda } )} )} \nonumber \\&+\,\lambda F_T ( \lambda (1-T)+\alpha ( 2-T+\lambda (T-1) )\nonumber \\&( {2+T\lambda } ))+\alpha \rho _1 (\lambda -1) ),\end{aligned}$$
(119)
$$\begin{aligned} {a}'_3 (1)= & {} \alpha ( \rho ( {-2+\lambda (3+\lambda )} )+F_T ( \lambda ( {2+\lambda -4\rho } )\nonumber \\&+\,2\rho )-\lambda F_T ^{2}(1+2\lambda )+\rho _1 (\lambda -1) ), \end{aligned}$$
(120)
$$\begin{aligned} {a}'_4 (1)= & {} (F_T -1)( 2\lambda ( {2+\lambda (1+T)})+F_T ( 2\alpha (\lambda -1)\nonumber \\&( {1+\lambda (1+T)})-\lambda ( {2+\lambda (1+T)})) \nonumber \\&\, {-\,\alpha (\lambda -1)( {4+(1+T)\lambda (2+\rho )+\rho _1 } )} ), \end{aligned}$$
(121)

and,

$$\begin{aligned} {a}'_5 (1)= & {} 2\lambda (1+\lambda )+F_T ( -2\lambda (1+\lambda )+2\alpha (\lambda -1)(1+2\lambda ) )\nonumber \\&-\,\alpha (\lambda -1)( {2+2\lambda (1+\rho )+\rho _1 } ). \end{aligned}$$
(122)

Substituting (118)–(122) and (109) into (117) lead to 0/0 one more time. By applying L’Hospital’s rule, for the second time, we get

$$\begin{aligned} {g}'(z)= & {} \frac{{a}''_1 (z)+{a}''_2 (z)+{a}''_3 (z)+{a}''_4 (z)+{a}''_5 (z)}{2\left( {b_1 ^{2}(z)+\left( {f(z)\left( {z-C(z)} \right) +zf(z)^{T}(F_T -1)} \right) \left( {b_2 (z)-b_3 (z)} \right) } \right) },\nonumber \\ \end{aligned}$$
(123)

where,

$$\begin{aligned} b_1 (z)= & {} f(z)+{f}'(z)( {z-C(z)} )+f(z)^{T-1}(F_T-1)\nonumber \\&({f(z)+Tz{f}'(z)} )-f(z){C}'(z), \end{aligned}$$
(124)
$$\begin{aligned} b_2 (z)= & {} Tf(z)^{T-2}(F_T -1)( (T-1)z{f}'(z)^{2}\nonumber \\&+\,f(z)({2{f}'(z)+z{f}''(z)} ) ), \end{aligned}$$
(125)

and,

$$\begin{aligned} b_3 (z)= & {} 2{f}'(z)\left( {{C}'(z)-1} \right) \nonumber \\&+\,\left( {C(z)-z}\right) {f}''(z)+f(z){C}''(z). \end{aligned}$$
(126)

Substituting \(z=1\) into (123) yields

$$\begin{aligned} {g}'(1)=\frac{{a}''_1 (1)+{a}''_2 (1)+{a}''_3 (1)+{a}''_4 (1)+{a}''_5 (1)}{2\left( {b_1 ^{2}(1)+\left( {f(1)\left( {1-C(1)} \right) +f(1)^{T}(F_T -1)} \right) \left( {b_2 (1)-b_3 (1)} \right) } \right) }. \end{aligned}$$
(127)

Keeping into account that \({f}''(1)=0\) and referring to (85), we write

$$\begin{aligned} {C}''(1)=\lambda ^{2}\sum _{j=M-1}^{T-1} {j(j+1)c_{j+1} =\rho _1 } , \end{aligned}$$
(128)

and,

$$\begin{aligned} {C}'''(1)=\lambda ^{3}\sum _{j=M-1}^{T-1} {j(j+1)(j-1)c_{j+1} =\rho _2 } . \end{aligned}$$
(129)

Examining the second derivative of (103)–(107), substituting for \(z=1,\) and using (109)–(110) and (128)–(129) provide

$$\begin{aligned} {a}''_1 (1)= & {} -2( {\alpha (\lambda -1)-\lambda } )( {1+T\lambda ( {4+\lambda (2T-1)} )} )\nonumber \\&+\,2\alpha (T-1)\lambda \rho ( {-2+( {3+T(\lambda -1)} )\lambda } )\nonumber \\&+\,2\alpha \lambda \rho ^{2}(\lambda -1)+F_T ^{2}( 2\lambda ( 1+T\lambda ( 4\nonumber \\&+\,\lambda (2T-1) ) )+\alpha ( 2+\lambda (2(\lambda -1)+T(10\nonumber \\&+\,\lambda ( -20+8T+( 10+(T-13)T )\lambda \nonumber \\&-\,(T-2)(T-1)\lambda ^{2} ) ) ) ) )+\alpha \lambda \rho _1 (T-1)(\lambda -1) \nonumber \\&+\,F_T ( -4\lambda +4T\lambda ^{2}( -4+\lambda (1-2T) )\nonumber \\&+\,\alpha ( -4+\lambda ( T^{3}(\lambda -1) \lambda ^{2}+T^{2}\lambda \nonumber \\&(\lambda ( 17-3\lambda -2\rho )+2(\rho -6) ) \nonumber \\&+\,2T( -9+2\rho +\lambda ( 15-4\rho +\lambda ( {\lambda +T-6} )) )\nonumber \\&-\,T\rho _1 (\lambda -1) \nonumber \\&{ { +2( {3(1-\lambda )+\rho (4\lambda -2)+(\lambda -1)\rho _1 } ) )} )} ),\nonumber \\\end{aligned}$$
(130)
$$\begin{aligned} {a}''_2 (1)= & {} (F_T -1)( -2\lambda ^{2}\rho (T-1)+\lambda F_T \nonumber \\&(-2(T-1)\lambda (1+T\lambda )+\alpha \nonumber \\&( {2-T+\lambda (T-1)} )(2+T\lambda ( {4+\lambda (T-1)} ) ) ) \nonumber \\&+\,\alpha ( \rho ( -2+\lambda ( 14-4\lambda \nonumber \\&+\,T( -8+3\lambda ( {5-T+\lambda (T-1)} ) ) ) )+\rho _1 \nonumber \\&{ {( -4+\lambda ( {8+3T(\lambda -1)-\lambda } ) )+\rho _2 (\lambda -1)} )} ),\nonumber \\\end{aligned}$$
(131)
$$\begin{aligned} {a}''_3 (1)= & {} \alpha ( 2\rho (1+\lambda )(4\lambda -1)+\rho ^{2}(2-4\lambda )\nonumber \\&-\,4\lambda ^{2}F_T ^{2}+\rho _1 ( {-4+\lambda ( {5+2\lambda } )} ) \nonumber \\&+\,2F_T ( {\lambda ( {1+\lambda (2-4\rho )-2( {\rho +\rho _1 } )} )+\rho _1 } )\nonumber \\&+\,\rho _1 (\lambda -1)),\end{aligned}$$
(132)
$$\begin{aligned} {a}''_4 (1)= & {} (F_T -1)( (T+1)\lambda F_T ( 2\alpha (\lambda -1)(2+T\lambda )\nonumber \\&-\,\lambda (4+T\lambda ) )+\lambda ( 4+2(1+T)\lambda (4+\lambda )\nonumber \\&-\,2\rho +\rho _1 )-\alpha (\lambda -1)( 4-2(\rho -\rho _1 )\nonumber \\&+\,(1+T)\lambda (T\lambda (2+\rho )+2(4+\rho _1 ) )+\rho _2 )),\nonumber \\ \end{aligned}$$
(133)

and,

$$\begin{aligned} {a}''_5 (1)= & {} 2\lambda F_T ( {-\lambda (4+\lambda )+2\alpha ( {-2+\lambda (1+\lambda )} )} )\nonumber \\&+\,\lambda ({2+2\lambda (4+\lambda )-2\rho +\rho _1 } )\nonumber \\&-\,\alpha (\lambda -1)( 2( 1-\rho +\rho _1\nonumber \\&+\,\lambda ( {4+\lambda (1+\rho )+2\rho _1 } ))+\rho _2 ). \end{aligned}$$
(134)

Substituting \(z=1\) into (124)–(126), utilizing (109)–(110) and (128), and accordingly substituting them along with (130)–(134) into (127), we ultimately have (after simplifying)

$$\begin{aligned} {g}'(1)=\frac{\psi _1 +\left( {\psi _2 +\psi _3 } \right) F_T }{2\left( {\lambda (1-T)-\rho +\left( {\lambda (T-1)+1} \right) F_T } \right) ^{2}}, \end{aligned}$$
(135)

where,

$$\begin{aligned} \psi _1= & {} -2( \lambda ( {T-1} )+\rho )( \lambda ( {T-1} )\nonumber \\&\quad (\alpha ( \lambda -1 )-\lambda )-\alpha \rho ( 1+\lambda ( \lambda -3 ))), \end{aligned}$$
(136)
$$\begin{aligned} \psi _2= & {} -(T-1)\lambda ( \lambda (2+( 3T-2 )\lambda )\nonumber \\&+\,\alpha (4+\lambda (4( {\lambda -2})+T(4+( {\lambda -6})\lambda )))) \nonumber \\&-\,2\rho ( \lambda +\lambda ^{2}( {T-1} )+\alpha ( 2+\lambda ( 2( {\lambda -2})\nonumber \\&+\,T(2+\lambda (\lambda -4)))) ), \end{aligned}$$
(137)

and,

$$\begin{aligned} \psi _3= & {} \lambda \rho _1 (1-\alpha (\lambda -2 ))\nonumber \\&+\,F_T (\lambda (2+\lambda ( {T-1})( 2+T\lambda )))\nonumber \\&+\,\alpha F_T ( 2+\lambda ( -2+T( 4+\lambda (-(\lambda -4)( {\lambda -2} )\nonumber \\&+\,T(2+\lambda ( {\lambda -4})))))). \end{aligned}$$
(138)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darabkh, K.A., Ibeid, H., Jafar, I.F. et al. A generic buffer occupancy expression for stop-and-wait hybrid automatic repeat request protocol over unstable channels. Telecommun Syst 63, 205–221 (2016). https://doi.org/10.1007/s11235-015-0115-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0115-5

Keywords

Navigation