Skip to main content

Advertisement

Log in

A new position based routing algorithm for vehicular ad hoc networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The main requirement to make safer journey in VANET environment is minimum delay with high packet delivery rate. This ensures that all data packets are received with minimal delay to prevent any accident. This paper presents a new algorithm for VANET class routing protocol that covers sparse and coarse region of vehicles. It takes the advantage of road layout to improve the performance of routing in VANETs. The proposed algorithm uses real-time GPS tracking system to obtain traffic information for creating road based paths from source node to destination node. The optimize forwarding is used to figure out the forwarding node along the road pattern that form the path to deliver the data packets. The results shows that proposed algorithm obtain better results considering the various simulation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bachir, A. & Benslimane, A. (2003). A multicast protocol in ad hoc networks inter-vehicle geocast. In Proceedings of 57th IEEE semiannual conference on vehicular technology (Vol. 4, pp. 2456–2460). Jeju, South Korea.

  2. Bernsen, J., & Manivannan, D. (2012). River: A reliable inter-vehicular routing protocol for vehicular ad hoc networks. Computer Networks, 56(17), 3795–3807.

    Google Scholar 

  3. Blažević, L., et al. (2001). Self-organization in mobile ad hoc networks: The approach of terminodes. IEEE Commununications Magazine, 39(6), 166–174.

    Google Scholar 

  4. Blazevic, L., Giordano, S., & Boudec, J. Y. L. (2002). Self-organized terminode routing. Journal of Cluster Computing, 5(2), 205–218.

    Google Scholar 

  5. Borsetti, D., & Gozalvez, J. (2010). Infrastructure-assisted geo-routing for cooperative vehicular networks. In International IEEE conference on vehicular networking conference (VNC) (pp. 255–262, 13–15 Dec, Jersey City, NJ. IEEE.

  6. Bose, P., Morin, P., Stojmenović, I., & Urrutia, J. (2001). Routing with guaranteed delivery in ad hoc wireless networks. ACM Wireless Networks, 7(6), 609–616.

    Google Scholar 

  7. Chawla, M., et al. (2006). Beaconless position-based routing with guaranteed delivery for wireless ad hoc and sensor networks. Acta Automatica Sinica, 32(6), 847–855.

    Google Scholar 

  8. Chou, C.-H., Ssu, K. F., & Jiau, H. C. (2008). Geographic forwarding with dead-end reduction in mobile ad hoc networks. IEEE Transaction on Vehicular Technology, 57(4), 2375–2386.

    Google Scholar 

  9. Clausen, T. & Jacquet, P. (2003). Optimized link state routing protocol (olsr). In Proceedings of the IEEE Intelligent Transport Systems.

  10. Daeinabi, A., Rahbar, P. A. G., & Khademzadeh, A. (2011). Vwca: An efficient clustering algorithm in vehicular ad hoc networks. Journal of Network and Computer Applications, 34(1), 207–222.

    Google Scholar 

  11. Ding, Y., & Xiao, L. (2010). Sadv: Static-node-assisted adaptive data dissemination in vehicular networks. IEEE Transactions on Vehicular Technology, 59(5), 2445–2455.

    Google Scholar 

  12. Durresi, M. et al. (2005). Emergency broadcast protocol for inter-vehicle communications. In Proceedings of 11th international conference on parallel and distributed systems (Vol. 2, pp. 402–406). Fuduoka, Japan.

  13. Egoh, K. & De, S. (2006). A multicriteria receiverside relay election approach in wireless ad hoc networks. In Proceedings of the MILCOM (pp. 1–7). Washington, DC.

  14. Egoh, K. & De, S. (2006). Priority-based receiver-side relay election in wireless ad hoc sensors networks. In Proceedings of the international conference on wireless communications and mobile computer (pp. 1177–1182). Vancouver, BC, Canada.

  15. Feng, K. T., Hsu, C. H., & Lu, T. E. (2008). Velocity-assisted predictive mobility and location-aware routing protocols for mobile ad hoc networks. IEEE Transaciton on Vehicular Technology, 57(1), 448–464.

    Google Scholar 

  16. Fubler, H., Widmer, J., Käsemann, M., Mauve, M., & Hartenstein, H. (2003). Contention-based forwarding for mobile ad hoc networks. Ad Hoc Networks, 1(4), 351–369.

    Google Scholar 

  17. Füßler, H. et al. (2002). Location-based routing for vehicular ad hoc networks. ACM Mobicom.

  18. Füßler, H., et al. (2003). Contention-based forwarding for mobile ad hoc networks. Ad Hoc Network, 1(4), 351–369.

    Google Scholar 

  19. Gupta, A., & Agarwal, S. (2010). A fast dynamic compression scheme for natural language text. International Journal of Computers & Mathematics with Applications, 60(12), 3139–3151.

    Google Scholar 

  20. Huang, H. Y., et al. (2007). Performance evaluation of suvnet with real-time traffic data. IEEE Transaction on Vehicular Technology, 56(6), 3381–3396.

    Google Scholar 

  21. Huang, Y. H., Fan, K. H., & Hsieh, W. S. (2015). Message authentication scheme for vehicular ad-hoc wireless networks without rsu. Journal of Information Hiding and Multimedia Signal Processing, 6(1), 113–122.

    Google Scholar 

  22. Jerbi, M. et al. (2006). Gytar: Improved greedy traffic aware routing protocol for vehicular ad hoc networks in city environments. In Poster: The third ACM international workshop on vehicular ad hoc networks (VANET 2006) (pp. 88–89).

  23. Jia, X. D., Chang, Y. F., Chang, C. C., & Wang, L. M. (2015). A critique of a lightweight identity authentication protocol for vehicular networks. Journal of Information Hiding and Multimedia Signal Processing, 6(2), 183–188.

    Google Scholar 

  24. Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. Mobile Computing, 353(5), 153–161.

    Google Scholar 

  25. Karp, B. & Kung, H. T. (2000). Gpsr: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on MobiCom (pp. 243–254). Boston, MA.

  26. Korkmaz, G. et al. (2004). Urban multi-hop broadcast protocol for inter-vehicle communication systems. In Proceedings of the 1st ACM international workshop on vehicular ad hoc networks (Vol. 2, pp. 76–85). Philadelphia, PA, USA.

  27. Kuhn, F., Wattenhofer, R., Z, Y., & Zollinger, A. (2003). Geometric ad hoc routing: Of theory and practice. In Proceedings of the 22nd annual symposium on principles of distributed computing (pp. 63–72). Boston, MA.

  28. Li, J. S., & Liu, K. H. (2013). A lightweight identity authentication protocol for vehicular networks. Telecommunication Systems, 53(4), 425–438.

    Google Scholar 

  29. Linda Briesemeister, L.S. & Hommel, G. (2000). Disseminating messages among highly mobile hosts based on inter-vehicle communication. In Proceedings of the IEEE intelligent vehicles symposium (pp. 522–527). Dearborn, MI, USA.

  30. Lin, C. R., & Gerla, M. (1997). Adaptive clustering for mobile wireless networks. IEEE Journal on Selected Areas in Communications, 15(7), 1265–1275.

    Google Scholar 

  31. Li, F., & Wang, Y. (2007). Routing in vehicular ad hoc networks: A survey. IEEE Vehicular Technology Magazine, 2(2), 12–22.

    Google Scholar 

  32. Lochert, C. et al. (2003). A routing strategy for vehicular ad hoc networks in city environments. In Proceedings of the IEEE intelligent vehicles symposium (pp. 156–161). Columbus, OH.

  33. Luo, J., Gu, X., Zhao, T., & Yan, W. (2010). A mobile infrastructure based vanet routing protocol in the urban environment. In In 2010 international conference on communications and mobile computing (CMC) (Vol. 3, pp 432–437).

  34. Maihöfer, C. et al. (2005). Abiding geocast: Time stable geocast for ad hoc networks. In Proceedings of the 2nd ACM international workshop on vehicular ad hoc networks (Vol. 4, pp. 20–29). Cologne, Germany.

  35. Ma, X., Sun, M.-T., Zhao, G., & Liu, X. (2008). An effcient path pruning algorithm for geographical routing in wireless networks. IEEE Transactions on Vehicular Technology, 57(4), 2474–2488.

    Google Scholar 

  36. Namboodiri, V., & Gao, L. (2007). Prediction-based routing for vehicular ad hoc networks. IEEE Transaction on Vehicular Technology, 56(4), 2332–2345.

    Google Scholar 

  37. Naumov, V. & Gross, T. (2007). Connectivity-aware routing (car) in vehicular ad hoc networks. In Proceedings of the IEEE international conference on computer and communications (pp. 1919–1927). Anchorage, AK.

  38. Pan, H. Y., Jan, R. H., Jeng, A. A. K., Chen, C., & Tseng, H. R. (2001). Mobile-gateway routing for vehicular networks. In IEEE VTSI APWCS.

  39. Perkins, C.E. & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance vector routing (dsdv) for mobile computers. In Proceedings of the ACM SIGCOMM conference on communications architectures and protocols applications (pp. 234–244). London, U.K.

  40. Perkins, C.E. & Royer, E.M. (1999). Ad hoc on-demand distance vector routing. In Proceedings of the 2nd IEEE workshop on mobile computing systems and applications (pp. 90–100). New Orleans, LA.

  41. Rondinone, M. & Gozalvez, J. (2010). Distributed and real time communications road connectivity discovery through vehicular ad-hoc networks. In 13th international IEEE conference on intelligent transportation systems (ITSC) (pp. 1079–1084).

  42. Rondinone, M., & Gozalvez, J. (2013). Contention-based forwarding with multi-hop connectivity awareness in vehicular ad-hoc networks. Computer Networks, 57(8), 1821–1837.

    Google Scholar 

  43. Savasta, S., Pini, M., & Marfia, G. (2008). Performance assessment of a commercial gps receiver for networking applications. In Proceedings of the IEEE internatrional conference on consumer communications and networking conference (pp. 613–617). Las Vegas, NV.

  44. Seet, B. C. et al. (2004). A-star: A mobile ad hoc routing strategy for metropolis vehicular communications. In Proceedings of the NETWORKING (Vol. 3042, pp. 989–999). London, UK.

  45. Shukla, R.S., Tyagi, N., Gupta, A., & Dubey, K.K. An efficient data dissemination and handover scheme for vehicular ad hoc networks. International Journal of Ad Hoc and Ubiquitous Computing (To appear).

  46. Sun, M. T. et al. (2000). Gps-based message broadcasting for inter-vehicle communication. In Proceedings of international conference on parallel processing (Vol. 2, pp. 279–286). Toronto, Canada.

  47. Taleb, T., Sakhaee, E., Jamalipour, A., Hashimoto, K., Kato, N., & Nemoto, Y. (2007). A stable routing protocol to support ITS services in VANET networks. IEEE Transactions on Vehicular Technology, 56(6), 3337–3347.

  48. Tian, J., Han, L., & Rothermel, K. (2003) Spatially aware packet routing for mobile ad hoc inter-vehicle radio networks. In Proceedings 2003 IEEE on Intelligent transportation systems (Vol. 2, pp 1546–1551).

  49. Tian, J., Han, L., Cseh, & Rothermel, R. (2003). Spatially aware packet routing for mobile ad hoc intervehicle radio networks. In Proceedings of the IEEE intelligent transport systems (pp. 1546–1551). Shanghai, China.

  50. Wang, S. S., & Lin, Y. S. (2013). Passcar: A passive clustering aided routing protocol for vehicular ad hoc networks. Computer Communications, 36(2), 170–179.

    Google Scholar 

  51. Xiang, Y., Liu, Z., Liu, R., Sun, W., & Wang, W. (2013). Geosvr: A map-based stateless vanet routing. Ad Hoc Networks, 11(7), 2125–2135.

  52. Zhao, J., & Cao, G. (2008). Vadd: Vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 57(3), 1910–1922.

    Google Scholar 

  53. Zorzi, M., & Rao, R. R. (2003). Geographic random forwarding (geraf) for ad hoc and sensor networks: Multihop performance. IEEE Transactions on Mobile Computer, 2(4), 337–348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, R.S., Tyagi, N., Gupta, A. et al. A new position based routing algorithm for vehicular ad hoc networks. Telecommun Syst 75, 205–220 (2020). https://doi.org/10.1007/s11235-015-0130-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0130-6

Keywords

Navigation