Skip to main content
Log in

Neighbors’ interference situation-aware power control scheme for dense 5G mobile communication system

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The next generation mobile communication (5G) systems is targeting very high data rate by deploying more number of small cells, but this deployment results in high cross-tier interference because of using the same frequency band. To solve this challenge, an efficient power control scheme is desired specially for the case of uplink scenario. Thus, to solve this challenge, we propose the neighbors’ interference situation-aware uplink power control (IA-ULPC) scheme to reduce the cross-tier interference. In this scheme, we consider the interference situation of the neighbor cells while controlling the power of the users. Moreover, we also derive the target signal-to-interference and noise-ratio (\(P_0\)) equation to dynamically adjust it based on the neighbors’ base station interference situation. We compare the performance of the proposed IA-ULPC with the conventional fractional power control scheme (C-FPC). The extensive system-level simulations are carried out to prove the validity of the proposed IA-ULPC scheme which almost doubles the user average throughput and also decreases the interference around 20% in dense two-tier heterogeneous network environment as compared to C-FPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Access, E.U.T.R. (2014). 3gpp ts 36.213 v12.1.0.

  2. Ahmad, A., Hassan, N. U., Assaad, M., & Tembine, H. (2016). Joint power control and rate adaptation for video streaming in wireless networks with time-varying interference. IEEE Transactions on Vehicular Technology, 65(8), 6315–6329.

    Article  Google Scholar 

  3. Ahmad, A., Khan, M. T. R., & Kaleem, Z. (2016). Uplink optimal power allocation for heterogeneous multiuser SIMO SC-FDMA networks. Electronics Letters, 52(24), 1990–1992.

    Article  Google Scholar 

  4. Ahmad, I., Kaleem, Z., & Chang, K. (2013). Uplink power control for interference mitigation based on users priority in two-tier femtocell network. In 2013 international conference on ICT convergence (ICTC) (pp. 474–476). IEEE.

  5. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  6. Assumptions, S. (2009). Parameters for FDD HeNB RF requirements. 3GPP TSG-RAN WG4 R4-092042.

  7. Castellanos, C. U., Villa, D. L., Rosa, C., Pedersen, K. I., Calabrese, F. D., Michaelsen, P. H., & Michel, J. (2008). Performance of uplink fractional power control in utran lte. In Vehicular technology conference, 2008 (pp. 2517–2521). IEEE.

  8. Deb, S., & Monogioudis, P. (2015). Learning-based uplink interference management in 4G LTE cellular systems. IEEE/ACM Transactions on Networking (TON), 23(2), 398–411.

    Article  Google Scholar 

  9. Equipment, U. (2010). Evolved universal terrestrial radio access (e-utra); radio frequency (rf) system scenarios, 3rd generation partnership project (3GPP). Technical report, TR 36.942 (2010).

  10. Kaleem, Z., Hui, B., & Chang, K. (2014). QoS priority-based dynamic frequency band allocation algorithm for load balancing and interference avoidance in 3GPP LTE HetNet. EURASIP Journal on Wireless Communications and Networking, 2014(1), 1–18.

    Article  Google Scholar 

  11. Kim, W., Kaleem, Z., & Chang, K. (2015). Power headroom report-based uplink power control in 3GPP LTE-A HetNet. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1–13.

    Google Scholar 

  12. Kim, W., Kaleem, Z., & Chang, K. (2015). UE-specific interference-aware open-loop power control in 3GPP LTE-A uplink HetNet. In 2015 seventh international conference on ubiquitous and future networks (pp. 682–684). IEEE.

  13. Morita, M., Nobukiyo, T., & Hamabe, K. (2012). Uplink power control method for lte femtocells based on resource usage aggregation. In IEEE 23rd international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 442–447). IEEE.

  14. Muhammad, B., & Mohammed, A. (2010) Uplink closed loop power control for LTE system. In 2010 6th international conference on emerging technologies (ICET) (pp. 88–93). IEEE.

  15. Network, E.U.T.R.A. (2015) X2 application protocol (x2ap)(3gpp ts 36.423 version 13.3.0 release 13).

  16. Taranetz, M., & Rupp, M. (2012). Performance of femtocell access point deployments in user hot-spot scenarios. In Telecommunication networks and applications conference (ATNAC), Australasian (pp. 1–5). IEEE.

Download references

Acknowledgements

This work was supported under Start Up Research Grant (SRGP) Project No. 1137 from Higher Education Commission (HEC) of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayaz Ahmad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendix

Appendix

The transmit power of the FUE/MUE in the serving FeNB/eNB is derived as follows:

$$\begin{aligned} P_{\textit{PUSCH}}^{\textit{serv}}=\textit{SINR}_{\textit{min}\_\textit{target}}^{\textit{serv}}+PL^{\textit{serv}}+\overline{\textit{IOT}}^{\textit{interf2serv}} \end{aligned}$$
(13)

By utilizing (4) in (13), we can describe it as:

$$\begin{aligned}&P_0^{\textit{serv}}+\alpha PL^{\textit{serv}}=\textit{SINR}_{\textit{min}\_\textit{target}}^{\textit{serv}}\nonumber \\&\quad +\,PL^{\textit{serv}}+\overline{\textit{IOT}}^{\textit{interf2serv}}\nonumber \\&P_0^{\textit{serv}}=\textit{SINR}_{\textit{min}\_\textit{target}}^{\textit{serv}}+(1-\alpha )PL^{\textit{serv}}\nonumber \\&\quad +\,\overline{\textit{IOT}}^{\textit{interf2serv}} \end{aligned}$$
(14)

By substituting (9) in to (14), we can write as:

$$\begin{aligned} P_0^{\textit{serv}}= & {} \textit{SINR}_{\textit{min}\_\textit{target}}^{\textit{serv}}+(1-\alpha )PL^{\textit{serv}}\nonumber \\&\quad +\,10\log _{10}\left( \sum \nolimits _{n=1}^{N}P_{n\_0}^{\textit{lin}\_{\textit{interf}}}\times \delta _n\right) -N_{\textit{therm}} \end{aligned}$$
(15)

Suppose \(P_{n\_0}^{\textit{lin}\_{\textit{interf}}}\) is same for all the neighbor cells, then we have

$$\begin{aligned} P_0^{\textit{serv}}= & {} \textit{SINR}_{\textit{min}\_\textit{target}}^{\textit{serv}}+(1-\alpha )PL^{\textit{serv}}\nonumber \\&\quad +\,10\log _{10}\left( \underbrace{P_{n\_0}^{\textit{lin}\_{\textit{interf}}}}_{\text {A}}\times \underbrace{\sum \nolimits _{n=1}^{N}\delta _n}_{\text {B}}\right) -N_{\textit{therm}} \end{aligned}$$
(16)

By applying log product rule, that is, \(\log (A \times B)=\log (A)+\log (B)\). Thus we have:

$$\begin{aligned} P_0^{\textit{serv}}= & {} \textit{SINR}_{\textit{min}\_\textit{target}}^{\textit{serv}}+(1-\alpha )PL^{\textit{serv}}\nonumber \\&\quad +\,10\log _{10}\left( P_{n\_0}^{\textit{lin}\_{\textit{interf}}}\right) +\,10\log _{10}\left( \sum \nolimits _{n=1}^{N}\delta _n\right) -N_{\textit{therm}}\nonumber \\ \end{aligned}$$
(17)

Since, \(P_{n\_0}^{\textit{interf}}=10\log _{10}(P_{n\_0}^{\textit{lin}\_\textit{interf}})\). Thus, we can write (17) as:

$$\begin{aligned} P_0^{\textit{serv}}= & {} \textit{SINR}_{\textit{min}\_\textit{target}}^{\textit{serv}}+(1-\alpha )PL^{\textit{serv}}\nonumber \\&+\,P_{n\_0}^{\textit{interf}}+10\log _{10}\left( \sum \nolimits _{n=1}^{N}\delta _n\right) -N_{\textit{therm}}. \end{aligned}$$
(18)

Thus, by rearranging (18) the total interference can be calculated as:

$$\begin{aligned} P_{n\_0}^{\textit{interf}}= & {} P_0^{\textit{serv}}-\textit{SINR}_{\textit{min}\_\textit{target}}^{\textit{serv}}\nonumber \\&\quad +\,(\alpha -1)PL^{\textit{serv}}-10\log _{10}\left( \sum _{n=1}^{N}\delta _n\right) +N_{\textit{therm}}.\nonumber \\ \end{aligned}$$
(19)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaleem, Z., Ahmad, A. & Rehmani, M.H. Neighbors’ interference situation-aware power control scheme for dense 5G mobile communication system. Telecommun Syst 67, 443–450 (2018). https://doi.org/10.1007/s11235-017-0350-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0350-z

Keywords

Navigation