Skip to main content
Log in

Resilient, bandwidth scalable and energy efficient hybrid PON architecture

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper proposes a resilient, bandwidth scalable and energy efficient WDM–TDM passive optical network (PON) architecture that provides network access services to the end user at very high data rates and reduces the power consumption of access network significantly in the presence of low traffic/underutilized network. The proposed power saving technique includes the efficient use of proper line cards (LC) and adaptive link rate (ALR) mechanism at optical line terminal located at the central office. In the presence of low traffic, ALR switches link rate from 10 to 1 Gbps depending on the particular threshold value of traffic load. In the presence of narrowband traffic, a significant amount of energy is saved. Proposed architecture also saves capital expenditure (CAPEX) at remote node and reduces significant CAPEX for larger networks. This architecture also provides network resiliency against LC/TRx or module failure and bandwidth scalability to support future generation PON architectures without any service interruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ghazisaeedi, E., Member, S., Huang, C., & Member, S. (2015). Off-peak energy optimization for links in virtualized network environment. Journal of IEEE Transactions on Cloud Computing, 99, 1–13.

    Google Scholar 

  2. Chattopadhyay, S., & Saha, P. K. (2016). IYL 2015—Challenges for electrical engineers in nanophotonics. IETE Technical Review, pp. 1–12.

  3. Lange, C., Braune, M., & Gieschen, N. (2008). On the energy consumption of FTTB and FTTH access networks. In Proceedings of National Fiber Optic Engineers Conference, pp. 1–3.

  4. Zhang, J., & Ansari, N. (2011). Towards energy-efficient 1G-EPON and 10G-EPON with sleep-aware MAC control and scheduling. IEEE Communications Magazine, 49(2), 33–38.

    Article  Google Scholar 

  5. Das, S. K., & Patra, S. K. (2012). Optical power aware quality analysis for the selection of optimal OVPN connection over WDM network. IETE Technical Review, 29(6), 492–498.

    Article  Google Scholar 

  6. Lee, C., Sorin, W. V., & Kim, B. Y. (2016). Fiber to the home using a PON infrastructure. Journal of Lightwave Technology, 24(12), 4568–4583.

    Article  Google Scholar 

  7. Garg, A. K., & Janyani, V. (2015). Identification of cost and energy efficient multiplexing techniques for LR-PON for different network scenario. In IEEE Workshop on recent advances in photonics, pp. 1–4.

  8. Garg, A. K., & Janyani, V. (2015). Power budget improvement in energy efficient long reach hybrid passive optical network. In 2015 international conference on microwave and photonics (ICMAP), Dhanbad, pp. 1–2.

  9. Gupta, M. K., Dali, P. P. & Singh, G. (2014). A novel approach to enhance the performance of ring based WDM PON. In Proceedings of IEEE international conference on signal propagation and computer technology, pp. 329–331.

  10. Brackett, C. A. (1990). Dense wavelength division multiplexing networks: Principles and applications. IEEE Journal on Selected Areas in Communications, 8(6), 948–964.

    Article  Google Scholar 

  11. Banerjee, A., Park, Y., Clarke, F., Song, H., Yang, S., Kramer, G., et al. (2005). Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: A review. Journal of Optical Networking, 4(16), 737–758.

    Article  Google Scholar 

  12. Effenberger, F., Cleary, D., Haran, O., Kramer, G., Li, R. D., Oron, M., et al. (2007). An introduction to PON technologies. IEEE Communications Magazine, 45(3), 17–25.

    Article  Google Scholar 

  13. Maier, G., Martinelli, M., Pattavina, A., & Salvadori, E. (2000). Design and cost performance of the multistage WDM-PON access networks. Journal of Lightwave Technology, 18, 125–143.

    Article  Google Scholar 

  14. Kubo, R., Kani, J. I., Ujikawa, H., Sakamoto, T., Fujimoto, Y., Yoshimoto, N., et al. (2010). Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON. IEEE/OSA Journal of Optical Communications and Networking, 2(9), 716–729.

    Article  Google Scholar 

  15. Garg, A. K., Madavi, A. A., & Janyani, V. (2017). Energy efficient flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network with pay as you grow deployment. Optical Engineering, 56(2), 026119. doi:10.1117/1.OE.56.2.026119.

    Article  Google Scholar 

  16. Garg, A. K., & Janyani, V. (2017). Adaptive bandwidth mechanism using dual rate OLT for energy efficient WDM–TDM passive optical network. Telecommunication System. doi:10.1007/s11235-017-0316-1.

  17. Song, J., Yang, C., Zhang, Q., Ma, Z., Huang, X., et al. (2015). Energy efficiency evaluation of tree-topology 10 gigabit ethernet passive optical network and ring-topology time- and wavelength-division-multiplexed passive optical network. Optical Engineering, 54(9), 090502.

    Article  Google Scholar 

  18. Feng, H., Chae, C., Tran, A. V., & Nirmalathas, A. (2011). Cost-effective introduction and energy-efficient operation of long-reach WDM/TDM PON systems. Journal of Lightwave Technology, 29(21), 3135–3143.

    Article  Google Scholar 

  19. Kani, J., Shimazu, S., Yoshimoto, N., & Hadama, H. (2011). Energy efficient optical access network technologies. In OFC/NFOEC, 2011, pp. 1–3.

  20. Dixit, A., Lannoo, B., Das, G., Colle, D., Pickavet, M., & Demeester, P. (2013). Flexible TDMA/WDMA passive optical network: Energy efficient next-generation optical access solution. Optical Switching and Networking, 10(4), 491–506.

    Article  Google Scholar 

  21. Tadokoro, M., Kubo, R., Nishihara, S., Yamada, T., & Nakamura, H. (2012). Adaptive bandwidth aggregation mechanisms using a shared wavelength for energy-efficient WDM/TDM-PON, pp. 87–88.

  22. Cheng, N., Gao, J. H., Xu, C., et al. (2014). Flexible TWDM PON system with pluggable optical transceiver modules. Optics Express, 22(2), 2079–2091.

    Google Scholar 

  23. Cheng, N. (2015). Flexible TWDM PON with WDM overlay for converged services. Optical Fiber Technology, 26, 21–30.

    Article  Google Scholar 

  24. Yuan, Y., Lu, P., Rodrigues, J., & Zhu, Z. (2013). Improving energy-efficiency of HFC networks with a master-slave linecard configuration. InProceedings of IEEE international conference on communications (ICC), pp. 4159–4163.

  25. Zhu, Z. (2012). Design of energy-saving algorithms for hybrid fiber coaxial networks based on the DOCSIS 3.0 standard. IEEE/OSA Journal of Optical Communications and Networking, 4(6), 449–456.

    Article  Google Scholar 

  26. Zhu, Z., Lu, P., Rodrigues, J., & Wen, Y. (2013). Energy-efficient wideband cable access networks in future smart cities. IEEE Communications Magazine, 51(6), 94–100.

    Article  Google Scholar 

  27. Lu, P., Yuan, Y., Yang, Z., & Zhu, Z. (2013). On the performance analysis of energy-efficient upstream scheduling for hybrid fiber-coaxial networks with channel bonding. IEEE Communications Letters, 17(5), 1020–1023.

    Article  Google Scholar 

  28. Chatterjee, B. C., Sarma, N., & Oki, E. (2015). Routing and spectrum allocation in elastic optical networks: A tutorial. IEEE Communications Surveys & Tutorials, 17(3), 1776–1800.

    Article  Google Scholar 

  29. Chatterjee, B. C., & Oki, E. (2015). Performance evaluation of spectrum allocation policies for elastic optical networks. In 2015 17th international conference on transparent optical networks (ICTON), Budapest, pp. 1–4.

  30. Zhang, G., Leenheer, M. D., Morea, A., & Mukherjee, B. (2013). A survey on OFDM-based elastic core optical networking. IEEE Communications Surveys & Tutorials, 15(1), 65–87.

  31. Zhang, G., Leenheer, M. D., & Mukherjee, B. (2012). Optical traffic grooming in OFDM-based elastic optical networks [Invited]. IEEE/OSA Journal of Optical Communications and Networking, 4(11), B17–B25.

    Article  Google Scholar 

  32. Garg, A. K., & Janyani, V. (2016). WDM-PON network for simultaneous upstream transmission with ONU interconnection capability. In The international conference on fiber optics and photonics (PHOTONICS 2016), India Tu4A.13.

  33. Garg, A. K., & Janyani, V. (2016). Overall/subgroup ONU intercommunication based on two stage flexible PON network. In The international conference on fiber optics and photonics (PHOTONICS 2016), India W3A.1.

  34. De Andrade, M., Buttaboni, A., Tornatore, M., Boffi, P., Martelli, P., Pattavina A., et al. (2012). Design of long-reach TDM/WDM passive optical access networks. In Proceedings of XVth international telecommunications network strategy and planning symposium (NETWORKS), pp. 1–6.

  35. Keiser, G. (1991). Optical Fiber Communications (2nd ed.). Highstown, NJ: McGraw-Hill.

    Google Scholar 

  36. Agarwal, G. P. (2007). Optical Communication Systems (OPT428). New York: University of Rochester.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Garg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, A.K., Janyani, V. Resilient, bandwidth scalable and energy efficient hybrid PON architecture. Telecommun Syst 67, 687–698 (2018). https://doi.org/10.1007/s11235-017-0369-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0369-1

Keywords

Navigation