Skip to main content
Log in

A fast handover protocol for 6LoWPAN wireless mobile sensor networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) are finding application in numerous fields. For many of these applications, some or all of the sensor nodes are mobile. Mobility management in WSNs is a challenging and has been the subject of intensive research. In this paper, we propose an IP-based mobility management protocol named Fast handover Proxy Mobile IPv6 for Sensor networks (FPMIPv6-S). FPMIPv6-S provides network-based mobility support for 6LoWPAN WSN when a sensor node moves between two Personal Area Networks. It is an improved version of the PMIPv6 protocol proposed for mobility management in IPv6 networks. FPMIPv6-S messages are carried by RPL protocol. Analytical evaluation of the proposed protocol shows significantly improved performance with respect to network mobility cost (signalling traffic) when compared to PMIPv6 and RPL alone. We also integrated the FPMIPv6-S protocol in the NS-3 simulator and performed a thorough performance comparison of FPMIPv6-S and RPL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Herein, the term 6LoWPAN mobile node is the same as a MN, coordinator, and a body coordinator.

References

  1. Alliance, Z. (2007). Zigbee specification. Technical report, http://www.zigbee.org.

  2. Kushalnagar, N., Montenegro, G., & Schumacher, C. P. (2007). IPv6 over low-power wireless personal area networks (6LoWPANs): Overview, assumptions, problem statement, and goals. RFC 4919, RFC Editor.

  3. Montenegro, G., Kushalnagar, N., Hui, J., & Culler, D. (2007). Transmission of IPv6 packets over IEEE 802.15.4 networks. RFC 4944, RFC Editor.

  4. Xiaonan, W., & Hongbin, C. (2016). Research on seamless mobility handover for 6lowpan wireless sensor networks. Telecommunication Systems, 61(1), 141–157.

    Article  Google Scholar 

  5. Johnson, D. B., Perkins, C. E., & Arkko, J. (2011). Mobility support in IPv6. RFC 6275.

  6. Ahmed, A., Bakar, K. A., Channa, M. I., Haseeb, K., & Khan, A. W. (2016). A trust aware routing protocol for energy constrained wireless sensor network. Telecommunication Systems, 61(1), 123–140.

    Article  Google Scholar 

  7. Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K., & Patil, B. (2008). Proxy mobile IPv6. RFC 5213, RFC Editor.

  8. Berguiga, A., & Youssef, H. (2012). A fast handover scheme for proxy-based mobility in wireless sensor networks. In Proceedings of the 10th ACM international symposium on mobility management and wireless access, (pp. 139–142). ACM.

  9. Berguiga, A., & Youssef, H. (2013). Efficient mobility management in 6LoWPAN wireless sensor networks. In Proceedings of the ninth international conference on wireless and mobile communications (ICWMC 2013), Nice, France, (Vol. 2126, pp. 244–250).

  10. NS-3, The network simulator-3. http://www.nsnam.org/.

  11. Jabir, A., Subramaniam, S., Ahmad, Z., & Hamid, N. (2012). A cluster-based proxy mobile IPv6 for IP-WSNs. EURASIP Journal on Wireless Communications and Networking, 2012(1), 173.

    Article  Google Scholar 

  12. Awwad, S., Ng, C., Noordin, N., & Rasid, M. (2010). Cluster based routing protocol for mobile nodes in wireless sensor network. Wireless Personal Communications, 61(2), 251.

    Article  Google Scholar 

  13. Ali, M., Voigt, T., Saif, U., Rmer, K., Dunkels, A., Langendoen, K., et al. (2006). Medium access control issues in sensor networks. SIGCOMM Computer Communication Review, 36(2), 33.

    Article  Google Scholar 

  14. Di Francesco, M., Das, S. K., & Anastasi, G. (2011). Data collection in wireless sensor networks with mobile elements: A survey. ACM Transactions on Sensor Networks, 8, 7:1–7:31.

    Article  Google Scholar 

  15. Anastasi, G., Conti, M., Francesco, M. D., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  16. Li, J., & Mohapatra, P. (2007). Analytical modeling and mitigation techniques for the energy hole problems in sensor networks. Pervasive and Mobile Computing, 3, 233–254.

    Article  Google Scholar 

  17. Soliman, H., Castelluccia, C., El Malki, K., & Bellier, L. (2008). Hierarchical mobile IPv6 mobility management (HMIPv6). RFC 5380, RFC Editor, Fremont, CA, USA.

  18. Montavont, J., Roth, D., & Noel, T. (2014). Mobile IPv6 in internet of things: Analysis, experimentations and optimizations. Ad Hoc Networks, 14, 15–25.

    Article  Google Scholar 

  19. Kim, J. H., Hong, C. S., & Shon, T. (2008). A lightweight nemo protocol to support 6LoWPAN. ETRI Journal, 30(5), 685–695.

    Article  Google Scholar 

  20. Devarapalli, V., Wakikawa, R., Petrescu, A., & Thubert, P. (2005). Network mobility (NEMO) basic support protocol. Technical report, RFC 3963.

  21. Wang, X., Zhong, S., & Zhou, R. (2012). A mobility support scheme for 6LoWPAN. Computer Communications, 35(3), 392–404.

    Article  Google Scholar 

  22. Silva, R., Silva, J. S., & Boavida, F. (2014). Mobility in wireless sensor networks survey and proposal. Computer Communications, 52, 1–20.

    Article  Google Scholar 

  23. Ha, M., Kim, D., Kim, S. H., & Hong, S. (2010). Inter-mario: A fast and seamless mobility protocol to support inter-PAN handover in 6LoWPAN. In Global telecommunications conference (GLOBECOM 2010), 2010 IEEE, (pp. 1–6). IEEE.

  24. Shin, M.-K., & Kim, H.-J. (2009). L3 mobility support in large-scale IP-based sensor networks (6LoWPAN). In 11th international conference on advanced communication technology, ICACT 2009, (Vol. 2, pp. 941–945). IEEE.

  25. Islam, M. M., & Huh, E.-N. (2011). Sensor proxy mobile IPv6 (SPMIPv6)—A novel scheme for mobility supported IP-WSNs. Sensors, 11(2), 1865–1887.

    Article  Google Scholar 

  26. Yokota, H., Chowdhury, K., Koodli, R., Patil, B., & Xia, F. (2010). RFC 5949 fast handovers for proxy mobile IPv6.

  27. Zinonos, Z., & Vassiliou, V. (2010). Inter-mobility support in controlled 6LoWPAN networks. In GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pp. 1718–1723.

  28. Petajajarvi, J., & Karvonen, H. (2011). Soft handover method for mobile wireless sensor networks based on 6LoWPAN. In 2011 international conference on distributed computing in sensor systems and workshops (DCOSS), pp. 1–6.

  29. Choi, S.-I., & Koh, S.-J. (2016). Use of proxy mobile IPv6 for mobility management in CoAP-based Internet-of-Things networks. IEEE Communications Letters, 20(11), 2284–2287.

    Article  Google Scholar 

  30. Shelby, Z. (2016). RFC 7252-the constrained application protocol (CoAP). Internet engineering task force (IETF)(2014).

  31. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., et al. (2012). RPL: IPv6 routing protocol for low-power and lossy networks. RFC 6550, RFC Editor.

  32. Bartolozzi, L., Pecorella, T., & Fantacci, R. (2012). ns-3 RPL module: IPv6 routing protocol for low power and lossy networks. In Proceedings of the 5th international ICST conference on simulation tools and techniques, SIMUTOOLS ’12, (pp. 359–366). ICST.

  33. Gaddour, O., & Koubâa, A. (2012). RPL in a nutshell: A survey. Computer Networks, 56, 3163–3178.

    Article  Google Scholar 

  34. Levis, P., Clausen, T., Hui, J., Gnawali, O., & Ko, J. (2011). The trickle algorithm. Request for comments, RFC 6206, RFC Editor.

  35. Akyildiz, I. F., Lin, Y.-B., Lai, W.-R., & Chen, R.-J. (2000). A new random walk model for PCS networks. IEEE Journal on Selected Areas in Communications, 18, 1254–1260.

    Article  Google Scholar 

  36. Shenoy, N., & Hartpence, B. (2004). A mobility model for cost analysis in integrated cellular/WLANs. In 13th international conference on computer communications and networks, ICCCN 2004. Proceedings, pp. 275–280.

  37. Chiang, K.-H., & Shenoy, N. (2004). A 2-d random-walk mobility model for location-management studies in wireless networks. IEEE Transactions on Vehicular Technology, 53, 413–424.

    Article  Google Scholar 

  38. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483–502.

    Article  Google Scholar 

  39. Akyildiz, I., & Wang, W. (2002). A dynamic location management scheme for next-generation multitier PCS systems. IEEE Transactions on Wireless Communications, 1, 178–189.

    Article  Google Scholar 

  40. Kemeny, J. G., & Snell, J. L. (1976). Finite Markov chains. New York: Springer-Verlag.

    Google Scholar 

  41. Wozniak, J. (2016). Mobility management solutions for current IP and future networks. Telecommunication Systems, 61(2), 257–275.

    Article  Google Scholar 

  42. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  43. Pathan, A.-S. K., & Hong, C. S. (2008). SERP: Secure energy-efficient routing protocol for densely deployed wireless sensor networks. Annals of Telecommunications-annales des télécommunications, 63(9–10), 529–541.

    Article  Google Scholar 

  44. Wang, A., & Chandrakasan, A. (2002). Energy-efficient DSPs for wireless sensor networks. Signal Processing Magazine, IEEE, 19(4), 68–78.

    Article  Google Scholar 

  45. Haas, Z. J. (2001). Design methodologies for adaptive and multimedia networks. Communications Magazine, IEEE, 39(11), 106–107.

    Article  Google Scholar 

  46. Wang, X., & Zhong, S. (2013). A hierarchical scheme on achieving all-IP communication between WSN and IPv6 networks. AEU - International Journal of Electronics and Communications, 67(5), 414–425.

    Article  Google Scholar 

  47. Kang, H.-S., & Park, C.-S. (2012). An authentication and key management scheme for the proxy mobile IPv6. In D. Lee & M. Yung (Eds.), Information security applications, Lecture Notes in Computer Science (Vol. 7690, pp. 144–160). Berlin: Springer.

  48. Narten, T., Simpson, W. A., Nordmark, E., & Soliman, H. (2007). Neighbor discovery for IP version 6 (IPv6). Request for comments, RFC 4861, RFC Editor.

  49. Katz, D., & Ward, D. (2010). Bidirectional forwarding detection (BFD). Request for comments, RFC 5880, RFC Editor.

  50. Teraoka, F. (2008). Unified layer 2 (L2) abstractions for layer 3 (L3)-driven fast handover. Network, 501, 8.

    Google Scholar 

  51. Cobârzan, C., Montavont, J., & Noel, T. (2015). Integrating mobility in RPL. In European Conference on Wireless Sensor Networks (pp. 135–150). Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelwahed Berguiga.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berguiga, A., Youssef, H. A fast handover protocol for 6LoWPAN wireless mobile sensor networks. Telecommun Syst 68, 163–182 (2018). https://doi.org/10.1007/s11235-017-0383-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0383-3

Keywords

Navigation