Skip to main content

Advertisement

Log in

The effect of Weibull fading channel on cooperative spectrum sensing network using an improved energy detector

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper analyses the performance of proposed cooperative spectrum sensing (CSS) network in Weibull fading environment. First, we have derived the novel analytic expressions for probabilities of missed detection and false alarm in Weibull fading channel, assuming an improved energy detector (IED), selection combining diversity scheme and multiple antennas at each cognitive radio (CRs). Next, performance is analyzed using complementary receiver operating characteristics curves, total error rate, average channel throughput, and network utility function curves for the proposed CSS network. The optimal performance of CSS network is achieved by optimizing the CSS network parameters. The closed form of expressions for the optimum value of number of CRs, arbitrary power of received signal, and detection threshold at each CR are derived using OR-Rule and AND-Rule at fusion center (FC). The average channel throughput and network utility function analysis are evaluated using \(k=1+n\) and \(k=N-n\) fusion rules at FC. Finally, the impact of several network parameters such as, multiple antennas at each CR (M), number of CRs (N) in CSS network, Weibull fading parameter (V), arbitrary power of received signal (p), and sensing channel SNR (\({\bar{\gamma }})\) on the performance of proposed CSS network are investigated using the simulation results. The performance comparison between conventional energy detector and an IED has been highlighted with the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Federal Communications Commission. (2002). Spectrum policy task force. ET Docket 02-135

  2. Mitola, J., & Maguire, G. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  3. Cabric, D., Mishra, S. M., & Brodersen, R. W. B. (2004) Implementation issues in spectrum sensing for cognitive radios. In Proceedings of the Asilomar conference on signals, systems, and computers (Vol. 1, pp. 772–776).

  4. Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55(4), 523–31.

    Article  Google Scholar 

  5. Digham, F. F., Alouini, S.. & Simon, M. K. (2003). On the energy detection of unknown signals over fading channels. In Proceedings of IEEE international conference on communications (ICC’03), Alaska, USA (pp. 3575–3579).

  6. Ganesan, G., & Li, Y. G. (2005). Cooperative spectrum sensing for cognitive radio networks. In Proceedings of IEEE symp. new frontiers in dynamic spectrum access networks (DySPAN’05), Baltimore, USA (pp. 137–143).

  7. Ghasemi, A., & Sousa, E. S. (2005). Collaborative spectrum sensing for opportunistic access in fading environments. In Proceedings of 1st IEEE international symposium on new frontiers in dynamic spectrum access network, Baltimore, USA (pp. 131–136).

  8. Atawi, I. E., et al. (2016). Spectrum-sensing in cognitive radio networks over composite multipath/shadowed fading channels. Computers and Electrical Engineering, 52, 337–348.

    Article  Google Scholar 

  9. Darawsheh, Hikmat Y., & Jamoos, Ali. (2014). Performance analysis of energy detector over \(\alpha -\mu \) fading channels with selection combining. Wireless Personal Communications: An International Journal archive, 77(2), 1507–1517.

    Article  Google Scholar 

  10. Lopez, M. B., & Casadevall, F. (2012). Improved energy detection spectrum sensing for cognitive radio. IET Communications, 6(8), 785–796.

    Article  Google Scholar 

  11. Chen, Y. (2005). Improved energy detector for random signals in Gaussian noise. IEEE Transactions on Wireless Communications, 9(2), 558–563.

    Article  Google Scholar 

  12. Sadhukhan, P., Kumar, N., & Bhatnagar, M. R. (2013). Improved energy detector based spectrum sensing for cognitive radio: An experimental study. In Proceedings of IEEE India conference (INDICON’13), Mumbai, India (pp. 1–5).

  13. Zhang, W., Mallik, R. K., & Letaief, K. B. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5761–5766.

    Article  Google Scholar 

  14. Singh, A., Bhatnagar, M. R., & Mallik, R. K. (2011). Optimization of cooperative spectrum sensing with an improved energy detector over imperfect reporting channel. In Proceedings of IEEE vehicular technology conference (VTC Fall).

  15. Singh, A., Bhatnagar, M. R., & Mallik, R. K. (2012). Cooperative spectrum sensing in multiple antenna based cognitive radio network using an improved energy detector. IEEE Communications Letters, 16(1), 64–67.

    Article  Google Scholar 

  16. Shi-Qi, L., & Bin-Jie, H. (2014). Cooperative spectrum sensing based on improved energy detector for cognitive radios. In Proceedings of IEEE international conference ICSPCC’14, Guilin (pp. 1–4).

  17. Ranjeeth, M., & Anuradha, S. (2016). Threshold based censoring of cognitive radios in Rician fading channel. Wireless Personal Communications, 93(2), 409–430.

    Article  Google Scholar 

  18. Ranjeeth, M., Behera, S., Nallagonda, S. & Anuradha, S. (2016). Optimization of cooperative spectrum sensing based on improved energy detector with selection diversity in AWGN and Rayleigh Fading. In Proceedings of ICEEOT’2016, Chennai, India (pp. 1–5).

  19. Ranjeeth, M., Behera, S., & Anuradha, S. (2016). Optimization of cooperative spectrum sensing network with multiple antenna in Nakagami-m fading channel using improved energy detector. In Proceedings of ICCSP-2016, Chennai, India (pp. 1410–1414).

  20. Ranjeeth, M., Behera, S., & Anuradha, S. (2016). Optimization of cooperative spectrum sensing network with multiple antenna in Weibull fading channel using improved energy detector. In Proceedings of ICCSP-2016, Chennai, India (pp. 1360–1364).

  21. Ranjeeth, M., Nallagonda, S., & Anuradha, S. (2017). Optimization analysis of improved energy detection based cooperative spectrum sensing network in Nakagami-m and Weibull fading channels. Journal of Engineering Science and Technology Review, 10(2), 114–121.

    Article  Google Scholar 

  22. Sofotasios, P. C., Fikadu, M. K., Ho-Van, K., & Valkama, M. (2013). Energy detection sensing of unknown signals over Weibull fading conditions. In International conference on advanced technologies for communications (ATC-2013) (pp. 414–419).

  23. Liang, Y. C., Zeng, Y., Peh, E., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.

    Article  Google Scholar 

  24. Stotas, S., & Nallanathan, A. (2012). On the throughput and spectrum senisng enhancement of opportunistic spectrum access cognitive radio network. IEEE Transactions on Wireless Communications, 11(1), 97–107.

    Article  Google Scholar 

  25. Bhanavathu, N. R., & Khan, M. Z. A. (2016). On throughput maximization of cognitive radio using cooperative spectrum sensing over erroneous control channel. In Conference on communication NCC (pp. 1–6).

  26. Suwen W., Ming Z., & Jinkang Z. (2009). Optimal number of secondary users through maximizing utility in cooperative spectrum sening. In IEEE vehicular technology conference (VTC Fall) (pp. 634–639).

  27. Ranjeeth, M., & Anuradha, S. (2017). Throughput analysis in cooperative spectrum sensing network with an improved energy detector. In Proceedings of international conference PIERS-2017, Singapore.

  28. Hu, H., Zhang, H., Yu, H., Chen, Y., & Jafarian, J. (2015). Energy efficient design of channel sensing in cognitive radio networks. Computers and Electrical Engineering (Elsevier), 42, 207–220.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ranjeeth.

Appendix

Appendix

1.1 Expression for threshold value

The closed form of expression for threshold value using the multiple antennas at each CR can be calculated with the help of Eq. (18). Applying logarithm on both sides to Eq. (18) then it reduces to:

$$\begin{aligned}&\Longrightarrow M \ln \left( {1-\exp \left( {-\left\{ {\frac{\uplambda ^{2\big /P}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) } \right) =\ln \left( {1-P_f } \right) \nonumber \\&\Longrightarrow \exp \left( {{\ln (1-P_f )}\big /M} \right) =1-\exp \left( {-\left\{ {\frac{\lambda ^{2\big /P}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) ,\nonumber \\&\Longrightarrow 1-\exp \left( {{\ln (1-P_f )}\big /M} \right) =\exp \left( {-\left\{ {\frac{\lambda ^{2\big /P}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) ,\nonumber \\&\Longrightarrow \ln \left( {1-\exp \left( {{\ln (1-P_f )}\big /M} \right) } \right) =\left( {-\left\{ {\frac{\lambda ^{2\big /P}\Gamma (P)}{\sigma _n^2 }} \right\} ^{C}} \right) , \nonumber \\\end{aligned}$$
(63)
$$\begin{aligned} \lambda= & {} \left( {\frac{\sigma _n^2 }{\Gamma (\mathrm {P})}\left( {\ln \left( {1\big /{\left( {1-\exp \left( {{\ln (1-P_f )}\big /M} \right) } \right) }} \right) } \right) ^{1\big /C}} \right) ^{p\big /2} \end{aligned}$$
(64)

1.2 Optimization of CSS network parameters

1.2.1 A: Optimization of threshold value using \(P_f \) and \(P_m \) expressions:

An optimum value of threshold (\(\lambda _{opt} \)) is required to decide the existance of PU with minimum threshold value. The closed form of expression for optimum value of threshold for single antenna case can be calculated by differentiate Eqs. (9 and 17) w.r.t to \(\uplambda \):

$$\begin{aligned}&\frac{\partial P_f }{\partial \lambda }+\frac{\partial P_m }{\partial \lambda }=0 \end{aligned}$$
(65)
$$\begin{aligned}&\Longrightarrow -\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) C\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C-1}\nonumber \\&\quad \quad \frac{2\lambda ^{\left( {2\big /p} \right) -1}\Gamma (\mathrm {P})}{p\sigma _n^2 }+\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 \left( {1+\gamma } \right) }} \right\} ^{C}} \right) \nonumber \\&\quad \quad C\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\left( {1+\gamma } \right) \sigma _n^2 }} \right\} ^{C-1}\frac{2\lambda ^{\left( {2\big /p} \right) -1}\Gamma (\mathrm {P})}{p\sigma _n^2 \left( {1+\gamma } \right) }=0 \nonumber \\&\Longrightarrow \exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) \nonumber \\&\quad \quad =\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 \left( {1+\gamma } \right) }} \right\} ^{C}} \right) \left\{ {\frac{1}{\left( {1+\gamma } \right) }} \right\} ^{C}, \nonumber \\&\Longrightarrow \left( {\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) =\left( {\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 \left( {1+\gamma } \right) }} \right\} ^{C}} \right) \nonumber \\&\quad \quad +\,C\ln \left( {1+\gamma } \right) , \nonumber \\&\Longrightarrow \left( {\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) \left( {1-\left\{ {\frac{1}{\left( {1+\gamma } \right) }} \right\} ^{C}} \right) \nonumber \\&\quad \quad =C\ln \left( {1+\gamma } \right) , \nonumber \\&{\Longrightarrow }\left( {\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) ={C\ln \left( {1+\gamma } \right) }\Bigg /{\left( {1-\left\{ {\frac{1}{\left( {1+\gamma } \right) }} \right\} ^{C}} \right) },\nonumber \\ \end{aligned}$$
(66)
$$\begin{aligned}&\lambda _{opt} =\left( {\frac{\sigma _n^2 }{\Gamma (\mathrm {P})}\left( {{C\ln \left( {1+\gamma } \right) }\Bigg /{\left( {1-\left\{ {\frac{1}{\left( {1+\gamma } \right) }} \right\} ^{C}} \right) }} \right) ^{1\big /C}} \right) ^{P\big /2}\nonumber \\ \end{aligned}$$
(67)

1.2.2 B: Optimization of arbitrary power of received signal (p) using \(P_f \) and \(P_m \) expressions:

It is also necessary to optimize the arbitrary power of the received signal. The optimum value of p (\(p_{opt} \)) can be calculated by differentiating Eqs. (9) and (17) w.r.t p for a single antenna case:

$$\begin{aligned}&\frac{\partial P_f }{\partial p}+\frac{\partial P_m }{\partial p}=0 \end{aligned}$$
(68)
$$\begin{aligned}&\frac{\partial P_m }{\partial p}=-M\left[ {1-\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 (1+\gamma )}} \right\} ^{C}} \right) } \right] ^{M-1}\nonumber \\&\quad \quad \exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 (1+\gamma )}} \right\} ^{C}} \right) \nonumber \\&\quad \quad C\left\{ {\frac{\lambda ^{2\big /p}\Gamma (P)}{\sigma _n^2 (1+\gamma )}} \right\} ^{C-1}\frac{2}{p^{2}}\frac{\lambda ^{\left( {2\big /p} \right) }\log \lambda \Gamma (\mathrm {P})}{\sigma _n^2 (1+\gamma )} \end{aligned}$$
(69)
$$\begin{aligned}&\frac{\partial P_f }{\partial p}=M\left[ {1-\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) } \right] ^{M-1}\nonumber \\&\quad \quad \exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) \nonumber \\&\quad \quad C\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C-1}\frac{2}{p^{2}}\frac{\lambda ^{\left( {2\big /p} \right) }\log \lambda \Gamma (\mathrm {P})}{\sigma _n^2 } \end{aligned}$$
(70)

adding Eqs. (69) and (70), then make equal to zero.

$$\begin{aligned}&\Longrightarrow \exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) \nonumber \\&\quad \quad =\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 (1+\gamma )}} \right\} ^{C}} \right) \left\{ {\frac{1}{(1+\gamma )}} \right\} ^{C}, \nonumber \\&\Longrightarrow \left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}\left( {1-\left( {\frac{1}{(1+\gamma )}} \right) ^{C}} \right) =C\log \left( {1+\gamma } \right) , \nonumber \\&p_{opt} =\frac{2\ln \lambda }{\ln \left( {\left\{ {\frac{C\ln \left( {1+\gamma } \right) }{\left[ {1-\left( {\frac{1}{1+\gamma }} \right) ^{C}} \right] }} \right\} ^{1\big /C}\left( {\frac{\sigma _n^2 }{\Gamma (\mathrm {P})}} \right) } \right) } \end{aligned}$$
(71)

1.3 Optimization of network parameters using OR-Rule at FC

1.3.1 a: Optimization of number of CRs \((N_{opt} ):\)

The closed form of expression for \(N_{opt} \) value for OR-Rule can be calculated using Eq. (33) as follows:

Total error rate: \(\hbox {Z}(\hbox {N})=Q_m +Q_f \)

$$\begin{aligned} \Delta \hbox {Z}(\hbox {N})= & {} \hbox {Z}(\hbox {N+1})-\hbox {Z}(\hbox {N})\nonumber \\&{\Longrightarrow }1-[(1-P_f )]^{N+1}-1+[(1-P_f )]^{N}\nonumber \\&+\, [P_m ]^{N+1}-[P_m ]^{N}=0, \nonumber \\&{\Longrightarrow }[P_m ]^{N+1}-[(1-P_f )]^{N+1}-[P_m ]^{N}\nonumber \\&+\,[(1-P_f )]^{N}=0, \nonumber \\&{\Longrightarrow }1-\left( {{(1-P_f )}\big /{P_m }} \right) ^{N+1}-\left( {1\big /{(P_m )}} \right) \nonumber \\&+\,\frac{1}{(P_m )}\left( {{(1-P_f )}\big /{P_m }} \right) ^{N}=0, \nonumber \\&{\Longrightarrow }1-\left( {1\big /{(P_m )}} \right) =\left( {{(1-P_f )}\big /{P_m }} \right) ^{N+1}\nonumber \\&-\,\frac{1}{(P_m )}\left( {{(1-P_f )}\big /{P_m }} \right) ^{N}, \end{aligned}$$
(72)

after simplification, the above expression reduces to

$$\begin{aligned} {\Longrightarrow }\left( {{\left( {1-P_m } \right) }\big /{P_f }} \right) =\left( {{\left( {1-P_f } \right) }\big /{P_m }} \right) ^{N}, \end{aligned}$$

applying logarithm on both sides, finally, the closed form of expression for \(N_{opt} \) using OR-Rule at FC is

$$\begin{aligned} N_{opt} \quad = \quad \left\lceil {\frac{\ln \left( {\frac{1-P_m }{P_f }} \right) }{\ln \left( {\frac{1-P_f }{P_m }} \right) }} \right\rceil \end{aligned}$$
(73)

1.3.2 b: Optimization of threshold value \(\left( {\lambda _{opt} } \right) \)

The closed form of expression for \(\lambda _{opt} \) value can be calculated by differentiating Eq. (33) w.r.t to \(\uplambda \), and equating to zero.

$$\begin{aligned}&\frac{\partial Q_m }{\partial \lambda }+\frac{\partial Q_f }{\partial \lambda }=0 \end{aligned}$$
(74)
$$\begin{aligned}&{\Longrightarrow }N\left( {1-P_f } \right) ^{N-1}\frac{\partial P_f }{\partial \lambda }+N\left( {P_m } \right) ^{N-1}\frac{\partial P_m }{\partial \lambda }=0 \end{aligned}$$
(75)

For a single antenna case (\(M=1\)), \({\partial P_f }\big /{\partial \lambda }\) and \({\partial P_m }\big /{\partial \lambda }\) expressions are given in Eq. (24), substituting Eqs. (24) in (75):

$$\begin{aligned} \begin{array}{l} \Longrightarrow \left( {1-P_f } \right) ^{N-1}\left( -\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) \right. \\ \quad \left. C\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C-1}\frac{2\lambda ^{\left( {2\big /p} \right) -1}\Gamma (\mathrm {P})}{p\sigma _n^2 } \right) \\ \quad +\,N\left( {P_m } \right) ^{N-1}\left( \exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 \left( {1+\gamma } \right) }} \right\} ^{C}} \right) \right. \\ \quad \left. C\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\left( {1+\gamma } \right) \sigma _n^2 }} \right\} ^{C-1}\frac{2\lambda ^{\left( {2\big /p} \right) -1}\Gamma (\mathrm {P})}{p\sigma _n^2 \left( {1+\gamma } \right) } \right) =0, \\ \end{array} \end{aligned}$$

after some algebric simplifications, above equation reduces to

$$\begin{aligned}&\Longrightarrow \left( {1-P_f } \right) ^{N-1}\left( {\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) } \right) \\&\quad \qquad =\left( {P_m } \right) ^{N-1}\left( {\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 \left( {1+\gamma } \right) }} \right\} ^{C}} \right) } \right) \left( {\frac{1}{1+\gamma }} \right) ^{C}, \end{aligned}$$

applying logarithm on both sides and solving algebric expressions, the above expression reduces to

$$\begin{aligned} \lambda _{opt}= & {} \left( \frac{\sigma _n^2 }{\Gamma (\mathrm {P})}\left( \left( {N-1} \right) \left( {\ln \left( {\frac{1-P_f }{P_m }} \right) } \right) \right. \right. \nonumber \\&\left. \left. +\,C\ln \left( {1+\gamma } \right) \Bigg /{\left( {1-\left\{ {\frac{1}{\left( {1+\gamma } \right) }} \right\} ^{C}} \right) } \right) ^{1\big /C} \right) ^{P\big /2} \end{aligned}$$
(76)

1.3.3 c: Optimization of arbitrary power of the received siganl \(\left( {p_{opt} } \right) \)

The closed form of expression for \(p_{opt} \) can be calculated by differentiating Eq. (33) w.r.t to p,

$$\begin{aligned}&\frac{\partial Q_m }{\partial p}+\frac{\partial Q_f }{\partial p}=0 \end{aligned}$$
(77)
$$\begin{aligned}&\Longrightarrow \left( {1-P_f } \right) ^{N-1}\frac{\partial P_f }{\partial p}+\left( {P_m } \right) ^{N-1}\frac{\partial P_m }{\partial p}=0 \end{aligned}$$
(78)

For a single antenna case (\(M=1\)), \({\partial P_f }\big /{\partial p}\) and \({\partial P_m }\big /{\partial p}\) expressions are given in Eqs. (28) and (29), substituting these equations in Eq. (78):

$$\begin{aligned}&\Longrightarrow {N}\left( {1-P_f } \right) ^{N-1}\left( -M\left[ {1-\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) } \right] ^{M-1}\right. \\&\quad \exp \left. \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) C\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C-1}\frac{2}{p^{2}}\frac{\lambda ^{\left( {2\big /p} \right) }\log \lambda \Gamma (\mathrm {P})}{\sigma _n^2 } \right) \\&+\,N\left( {P_m } \right) ^{N-1}\left( -M\left[ {1-\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 (1+\gamma )}} \right\} ^{C}} \right) } \right] ^{M-1}\right. \\&\quad \left. \exp \left( \! {-\left\{ \! {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 (1+\gamma )}} \!\right\} ^{C}} \right) C\left\{ \! {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 (1+\gamma )}} \right\} ^{C-1}\!\!\frac{2}{p^{2}}\frac{\lambda ^{\left( {2\big /p} \!\right) }\log \lambda \Gamma (\mathrm {P})}{\sigma _n^2 (1+\gamma )} \right) \!=\!0 , \end{aligned}$$

after some algebric simplifications, above equation reduces to

$$\begin{aligned}&\Longrightarrow \left( {1-P_f } \right) ^{N-1}\left( {\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) } \right) \\&\quad =\left( {P_m } \right) ^{N-1}\left( {\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 \left( {1+\gamma } \right) }} \right\} ^{C}} \right) } \right) \left( {\frac{1}{1+\gamma }} \right) ^{C}, \end{aligned}$$

applying logarithm on both sides and solving algebric expressions, the above expression reduces to

$$\begin{aligned} \Longrightarrow \frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }=\frac{\left( {N-1} \right) \left( {\ln \left( {\frac{1-P_f }{P_m }} \right) } \right) \,+\,C\ln \left( {1+\gamma } \right) }{\left( {1-\left( {\frac{1}{1+\gamma }} \right) ^{C}} \right) },\nonumber \\ \end{aligned}$$

apply logarithm on both sides, after simplification, the closed form of expression for \(p_{opt} \) is:

$$\begin{aligned} p_{opt} =\frac{2\ln \lambda }{\ln \left( {\left( {\frac{\left( {N-1} \right) \left( {\ln \left( {\frac{1-P_f }{P_m }} \right) } \right) \,+\,C\ln \left( {1+\gamma } \right) }{\left( {1-\left( {\frac{1}{1+\gamma }} \right) ^{C}} \right) }} \right) ^{1\big /C}\frac{\sigma _n^2 }{\Gamma (\mathrm {P})}} \right) } \end{aligned}$$
(79)

1.4 Optimization of network parameters using AND-Rule at FC

1.4.1 a: Optimization of threshold value \(\left( {\lambda _{opt} } \right) \)

The closed form of expression for \(\lambda _{opt} \) value can be calculated using Eqs. (24), (35), (38) and (39):

$$\begin{aligned} \begin{aligned}&\Longrightarrow {N}\left( {P_f } \right) ^{N-1}\left( -\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) \right. \\ {}&\quad \left. C\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C-1}\frac{2\lambda ^{\left( {2\big /p} \right) -1}\Gamma (\mathrm {P})}{p\sigma _n^2 } \right) \\&\quad +\,N\left( {1-P_m } \right) ^{N-1}\left( \exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 \left( {1+\gamma } \right) }} \right\} ^{C}} \right) \right. \\ {}&\quad \left. C\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\left( {1+\gamma } \right) \sigma _n^2 }} \right\} ^{C-1}\frac{2\lambda ^{\left( {2\big /p} \right) -1}\Gamma (\mathrm {P})}{p\sigma _n^2 \left( {1+\gamma } \right) } \right) =0 \\ \end{aligned} \end{aligned}$$
(80)

after some algebric simplifications, above equation reduces to

$$\begin{aligned}&\Longrightarrow \left( {P_f } \right) ^{N-1}\left( {\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) } \right) \\&\quad =\left( {1-P_m } \right) ^{N-1}\left( {\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 \left( {1+\gamma } \right) }} \right\} ^{C}} \right) } \right) \left( {\frac{1}{1+\gamma }} \right) ^{C}, \end{aligned}$$

applying logarithm on both sides and solving algebric expressions, the above expression reduces to

$$\begin{aligned}&\lambda _{opt} =\left( \frac{\sigma _n^2 }{\Gamma (\mathrm {P})}\left( \left( {N-1} \right) \left( {\ln \left( {\frac{P_f }{1-P_m }} \right) } \right) \right. \right. \nonumber \\&\quad \left. \left. +\,C\ln \left( {1+\gamma } \right) \Bigg /{\left( {1-\left\{ {\frac{1}{\left( {1+\gamma } \right) }} \right\} ^{C}} \right) } \right) ^{1\big /C} \right) ^{P\big /2} \end{aligned}$$
(81)

1.4.2 b: Optimization of arbitrary power of the received siganl \(\left( {p_{opt} } \right) \)

The closed form of expression for \(p_{opt} \) value can be calculated using Eqs. (35), (42), (43), (28) and (29):

$$\begin{aligned}&\Longrightarrow {N}\left( {P_f } \right) ^{N-1}\left( -M\left[ {1-\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) } \right] ^{M-1}\right. \nonumber \\&\quad \left. \exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) C\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C-1}\frac{2}{p^{2}}\frac{\lambda ^{\left( {2\big /p} \right) }\log \lambda \Gamma (\mathrm {P})}{\sigma _n^2 } \right) \nonumber \\&+\,N\left( {1-P_m } \right) ^{N-1}\left( -M\left[ {1-\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 (1+\gamma )}} \right\} ^{C}} \right) } \right] ^{M-1}\right. \nonumber \\&\quad \left. \exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 (1+\gamma )}} \right\} ^{C}} \right) C\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 (1+\gamma )}} \right\} ^{C-1}\frac{2}{p^{2}}\frac{\lambda ^{\left( {2\big /p} \right) }\log \lambda \Gamma (\mathrm {P})}{\sigma _n^2 (1+\gamma )} \right) =0\nonumber \\ \end{aligned}$$
(82)

after some algebric simplifications, above equation reduces to

$$\begin{aligned}&\Longrightarrow \left( {P_f } \right) ^{N-1}\left( {\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 }} \right\} ^{C}} \right) } \right) \\&\quad =\left( {1-P_m } \right) ^{N-1}\left( {\exp \left( {-\left\{ {\frac{\lambda ^{2\big /p}\Gamma (\mathrm {P})}{\sigma _n^2 \left( {1+\gamma } \right) }} \right\} ^{C}} \right) } \right) \left( {\frac{1}{1+\gamma }} \right) ^{C}, \end{aligned}$$

applying logarithm on both sides and solving algebric expressions, the above expression reduces to

$$\begin{aligned} p_{opt} =\frac{2\ln \lambda }{\ln \left( {\left( {\frac{\left( {N-1} \right) \left( {\ln \left( {\frac{P_f }{1-P_m }} \right) } \right) \,+\,C\ln \left( {1+\gamma } \right) }{\left( {1-\left( {\frac{1}{1+\gamma }} \right) ^{C}} \right) }} \right) ^{1\big /C}\frac{\sigma _n^2 }{\Gamma (\mathrm {P})}} \right) }\nonumber \\ \end{aligned}$$
(83)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjeeth, M., Anuradha, S. The effect of Weibull fading channel on cooperative spectrum sensing network using an improved energy detector. Telecommun Syst 68, 493–512 (2018). https://doi.org/10.1007/s11235-017-0405-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0405-1

Keywords

Navigation