Skip to main content
Log in

A Bursty Multi-node Handover scheme for mobile internet using the partially Distributed Mobility Management (BMH–DMM) architecture

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In the wireless network and mobile internet, several mobile nodes (MNs) may handover from the same previous network X to the same destination network Y at the same time. However, currently proposed Distributed Mobility Management (DMM)-based protocol mainly focus on the handover processing of a single MN’s handover. It causes many redundant messages’ exchanging when multiple MNs do handover at the same time. In this paper, a Bursty Multi-node Handover scheme for mobile internet using the partially Distributed Mobility Management (BMH–DMM) architecture is proposed to tackle the aforementioned problem. Using the proposed BMH–DMM method, one set of control messages for handover is used instead of n sets of control messages for a group that has n MNs. The performance analysis shown that when the number of MNs that perform handover at the same time and in the same place is increased, the handover overhead is not increased so much, for which the proposed BMH–DMM method can reduce about 30% bandwidth consumption for exchanging handover’s signaling messages. Furthermore, the network utilization, handover delay, packet loss, handover blocking probability of using the proposed BMH–DMM scheme are also smaller than that of using the individual handover approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Johnson, D., Perkins, C., & Arkko, J. (2004). Mobility support in IPv6. RFC 3775.

  2. Koodli, R. Ed. (2009). Mobile IPv6 fast handovers. Network Working Group, RFC 5568.

  3. Devarapalli, V., Chowdhury, K., Gundavelli, S., Patil, B., & Leung, K. (2008). Proxy Mobile IPv6. IETF RFC, 5213.

  4. Chan, A., Liu, D., Seite, P., Yokota, H., & Korhonen, J. (2014). Requirements for distributed mobility management. IETF RFC 7333.

  5. Bernardos, C. J., De la Oliva, A., & Giust, F. (2017). A PMIPv6-based solution for distributed mobility management. Internet-Draft (work in progress), draft-bernardos-dmm-pmip.

  6. Giust, F., Bernardos, C. J., & De La Oliva, A. (2014). Analytic evaluation and experimental validation of a network-based IPv6 distributed mobility management solution. IEEE Transactions on Mobile Computing, 13(11), 2484–2497.

    Article  Google Scholar 

  7. Bertin, P., Lee, J. H., & Seite, P. (2015). Distributed mobility anchoring. draft-seite-dmm-dma-06.txt.

  8. Chen, Y. S., Hsu, C. S., & Lee, H. K. (2014). An enhanced group mobility protocol for 6LoWPAN-based wireless body area networks. IEEE Sensors Journal, 14(3), 797–807.

    Article  Google Scholar 

  9. Tao, M., Dong, M., Ota, K., & He, Z. (2016). Multiobjective network opportunistic access for group mobility in mobile internet. IEEE Systems Journal, PP(99), 1–10.

  10. Fu, H. L., Lin, P., Yue, H., Huang, G. M., & Lee, C. P. (2014). Group mobility management for large-scale machine-to-machine mobile networking. IEEE Transactions on Vehicular Technology, 63(3), 1296–1305.

    Article  Google Scholar 

  11. De La Oliva, A., Banchs, A., Soto, I., Melia, T., & Vidal, A. (2008). An overview of IEEE 802.21: Media-independent handover services. IEEE Wireless Communications, 15(4), 96–103.

    Article  Google Scholar 

  12. D’Oro, S., Galluccio, L., Morabito, G., & Palazzo, S. (2015). Exploiting object group localization in the Internet of Things: Performance analysis. IEEE Transactions on Vehicular Technology, 64(8), 3645–3656.

    Article  Google Scholar 

  13. Chatzikokolakis, K., Kaloxylos, A., Spapis, P., Zhou, C., Bulakci, Ö., & Alonistioti, N. (2016). Context-aware location management of groups of devices in 5G networks. In Proceedings of the 10th IFIP international conference on autonomous infrastructure, management and security, (pp. 155–159).

  14. Chiang, M. S., Huang, C. M., & Tuan, D. D. (2014). Fast handover control scheme for multi-node using the group-based approach. IET Networks, 4(1), 44–53.

    Article  Google Scholar 

  15. Guan, J., You, I., Xu, C., & Zhang, H. (2016). The PMIPv6-based group binding update for IoT devices. Mobile Information Systems, 2016, 1–8. (Article ID 7853219).

    Google Scholar 

  16. Abinader, F., Gundavelli, S., Leung, K., Krishnan, S., & Premec, D. (2012). Bulk binding update support for Proxy Mobile IPv6. RFC 6602.

  17. Chen, L., Shu, Y., Gu, Y., Guo, S., He, T., Zhang, F., et al. (2016). Group-based neighbor discovery in low-duty-cycle mobile sensor networks. IEEE Transactions on Mobile Computing, 15(8), 1996–2009.

    Article  Google Scholar 

  18. Lee, C. H., Huang, C. M., & Tseng, P. H. (2014). Multihomed SIP-based network mobility for the scheduled public transit service. Wireless Communications and Mobile Computing, 14(1), 74–84.

    Article  Google Scholar 

  19. Ernest, P. P., Falowo, O. E., & Chan, H. A. (2016). Design and performance evaluation of distributed mobility management schemes for network mobility. Journal of Network and Computer Applications, 61, 46–58.

    Article  Google Scholar 

  20. Ernest, P. P., Chan, H. A., Xie, J., & Falowo, O. E. (2015). Mobility management with distributed mobility routing functions. Telecommunication Systems, 59(2), 229–246.

    Article  Google Scholar 

  21. Sanchez, M. I., Uruena, M., De la Oliva, A., Hernandez, J. A., & Bernardos, C. J. (2013). On providing mobility management in WOBANs: Integration with PMIPv6 and MIH. IEEE Communications Magazine, 51(10), 172–181.

    Article  Google Scholar 

  22. Murtadha, M. K., Noordin, N. K., & Ali, B. M. (2015). Survey and analysis of integrating PMIPv6 and MIH mobility management approaches for heterogeneous wireless networks. Wireless Personal Communications, 82(3), 351–1376.

    Article  Google Scholar 

  23. Ko, H., Lee, G., Pack, S., & Kweon, K. (2016). Timer-based bloom filter aggregation for reducing signaling overhead in distributed mobility management. IEEE Transactions on Mobile Computing, 15(2), 516–529.

    Article  Google Scholar 

  24. Yi, L., Zhou, H., Huang, D., & Zhang, H. (2013). D-PMIPv6: A distributed mobility management scheme supported by data and control plane separation. Mathematical and Computer Modelling, 58(5), 1415–1426.

    Article  Google Scholar 

  25. Yan, Z., Zeadally, S., Zhang, S., Guo, R., & Park, Y. J. (2016). Distributed mobility management in named data networking. Wireless Communications and Mobile Computing, 16(13), 1773–1783.

    Article  Google Scholar 

  26. Yang, Hua, Wakamiya, Naoki, Murata, Masayuki, Iwai, Takanori, & Yamano, Satoru. (2016). An autonomous and distributed mobility management scheme in mobile core networks. EAI Endorsed Transactions on Creative Technologies, 3(8), 35–42.

    Google Scholar 

  27. Balfaqih, M., Ismail, M., Nordin, R., Rahem, A. A., & Balfaqih, Z. (2017). Fast handover solution for network-based distributed mobility management in intelligent transportation systems. Telecommunication Systems, 64(2), 325–346.

    Article  Google Scholar 

  28. Ghazali, N. E., Ariffin, S. H., Wahab, N. H. A., Ain’Amiruddin, N., & Fisal, N. (2014). Handover threshold analysis using velocity for Proxy Mobile IPv6. In Proceedings of the IEEE Asia Pacific wireless and mobile, (pp. 36–41).

  29. Wang, X., Lei, X., Fan, P., Hu, R. Q., & Horng, S. J. (2014). Cost analysis of movement-based location management in PCS networks: An embedded Markov chain approach. IEEE Transactions on Vehicular Technology, 63(4), 1886–1902.

    Article  Google Scholar 

  30. Rasem, A., St-Hilaire, M., & Makaya, C. (2016). Efficient handover with optimized localized routing for Proxy Mobile IPv6. Telecommunication Systems, 62(4), 675–693.

    Article  Google Scholar 

  31. Lee, J. H., Bonnin, J. M., You, I., & Chung, T. M. (2013). Comparative handover performance analysis of IPv6 mobility management protocols. IEEE Transactions on Industrial Electronics, 60(3), 1077–1088.

    Article  Google Scholar 

  32. Gross, D., & Shortle, J. F. (2008). Fundamentals of queueing theory. London: Wiley.

    Book  Google Scholar 

  33. Lee, J. H., & Chung, T. M. (2010). How much do we gain by introducing route optimization in Proxy Mobile Ipv6 networks? Annals of Telecommunications, 65(5–6), bal3-246.

    Google Scholar 

  34. Zubair, M., Kong, X., & Mahfooz, S. (2015). DMAM: Distributed mobility and authentication mechanism in next generation networks. Security and Communication Networks, 8(5), 845–863.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science and Technology (MOST) of the Republic of China, Taiwan, under the Contract Number MOST 105-2221-E-006-063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Ming Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CM., Dao, DT. & Chiang, MS. A Bursty Multi-node Handover scheme for mobile internet using the partially Distributed Mobility Management (BMH–DMM) architecture. Telecommun Syst 69, 113–130 (2018). https://doi.org/10.1007/s11235-018-0435-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-018-0435-3

Keywords

Navigation