Skip to main content
Log in

Coded cooperative spatial modulation based on multi-level construction of polar code

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

A spatial modulation scheme based on the multi-level construction of polar code is proposed and its performance over Rayleigh and Rician fading channels is evaluated. The spatial modulation exhibits antenna index transmission that inculcates an increased spectral efficiency in the proposed setup. Moreover, in the considered multi-level construction of polar code there exists a parallel built-in structure that enabled us to effectively extend the proposed polar coded spatial modulation scheme to cooperative scenarios. In order to check the usefulness of the proposed coded cooperative spatial modulation scheme, we have also developed a conventional polar coded cooperative nested scheme in the context of spatial modulation. Monte Carlo simulated results reveal that the proposed coded cooperative spatial modulation scheme outperforms the nested coded cooperative spatial modulation scheme under an identical conditions. The increased bit-error-rate performance of the proposed coded cooperative spatial modulation scheme is made possible due to effective deployment of the joint successive cancellation polar decoder at the destination node. Moreover, the proposed coded cooperative spatial modulation schemes outperform its coded non-cooperative counterpart schemes under identical conditions, as expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barry, J. R., Lee, E. A., & Messerschmitt, D. G. (2004). Digital communication. New York: Springer.

    Book  Google Scholar 

  2. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335.

    Article  Google Scholar 

  3. Wolniansky, P. W., Foschini, G. J., Golden, G. D., & Valenzuela, R. A. (1998). V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. In ISSSE 98. 1998 URSI international symposium on signals, systems, and electronics, pp. 295–300.

  4. Li, Q., Li, G., Lee, W., Lee, M. I., Mazzarese, D., Clerckx, B., et al. (2010). MIMO techniques in WiMAX and LTE: A feature overview. IEEE Communications Magazine, 48(5), 86–92.

    Article  Google Scholar 

  5. Boccardi, F., Clerckx, B., Ghosh, A., Hardouin, E., Jngren, G., Kusume, K., et al. (2012). Multiple-antenna techniques in LTE-advanced. IEEE Communications Magazine, 50(3), 114–121.

    Article  Google Scholar 

  6. Mesleh, R. Y., Haas, H., Sinanovic, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.

    Article  Google Scholar 

  7. Yang, Y., & Jiao, B. (2008). Information-guided channel-hopping for high data rate wireless communication. IEEE Communications Letters, 12(4), 225–227.

    Article  Google Scholar 

  8. Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008). Spatial modulation: Optimal detection and performance analysis. IEEE Communications Letters, 12(8), 545–547.

    Article  Google Scholar 

  9. Hwang, S. U., Jeon, S., Lee, S., & Seo, J. (2009). Soft-output ML detector for spatial modulation OFDM systems. IEICE Electronics Express, 6(19), 1426–1431.

    Article  Google Scholar 

  10. Naidoo, N. R., Xu, H. J., & Quazi, T. A. M. (2011). Spatial modulation: Optimal detector asymptotic performance and multiple-stage detection. IET Communications, 5(10), 1368–1376.

    Article  Google Scholar 

  11. Basar, E., Aygolu, U., Panayirci, E., & Poor, H. V. (2011). New trellis code design for spatial modulation. IEEE Transactions on Wireless Communications, 10(8), 2670–2680.

    Article  Google Scholar 

  12. Mesleh, R., Di Renzo, M., Haas, H., & Grant, P. M. (2010). Trellis coded spatial modulation. IEEE Transactions on Wireless Communications, 9(7), 2349–2361.

    Article  Google Scholar 

  13. Koca, M., & Sari, H. (2012). Bit-interleaved coded spatial modulation. In IEEE 23rd international symposium on personal indoor and mobile radio communications, 2012. PIMRC 2012, Sydney, Australia, pp. 1949–1954.

  14. Hunter, T. E., & Nosratinia, A. (2006). Diversity through coded cooperation. IEEE Transactions on Wireless Communications, 5(2), 283–289.

    Article  Google Scholar 

  15. Laneman, J. N., Wornell, G. W., & Tse, D. N. (2001). An efficient protocol for realizing cooperative diversity in wireless networks. In 2001 IEEE international symposium on information theory, 2001. Proceedings, p. 294.

  16. Avestimehr, A. S., Diggavi, S. N., & David, N. C. (2011). Wireless network information flow: A deterministic approach. IEEE Transactions on Information Theory, 57(4), 1872–1905.

    Article  Google Scholar 

  17. Ejaz, S., & FengFan, Y. (2017). Jointly optimized ReedMuller codes for multilevel multirelay coded-cooperative VANETS. IEEE Transactions on Vehicular Technology, 66(5), 4017–4028.

    Google Scholar 

  18. Soliman, T., & Yang, F. (2016). Cooperative punctured polar coding (CPPC) scheme based on plotkins construction. Radioengineering, 25(3), 482–489.

    Article  Google Scholar 

  19. Soliman, T., Yang, F., Ejaz, S., & Almslmany, A. (2017). Decode-and-forward polar coding scheme for receive diversity: A relay partially perfect retransmission for half-duplex wireless relay channels. IET Communications, 11(2), 185–191.

    Article  Google Scholar 

  20. Lin, R., Martin, P. A., & Taylor, D. P. (2012). Approximate Gaussian density evolution based analysis of distributed and adaptive turbo codes. IEEE Transactions on Communications, 60(8), 2156–2166.

    Article  Google Scholar 

  21. Zhang, B., Chen, H., El-Hajjar, M., Maunder, R., & Hanzo, L. (2013). Distributed multiple-component turbo codes for cooperative hybrid ARQ. IEEE Signal Processing Letters, 20(6), 599–602.

    Article  Google Scholar 

  22. Umar, R., Yang, F., & Mughal, S. (2017). Turbo coded OFDM combined with MIMO antennas based on matched interleaver for coded-cooperative wireless communication. Information, 8(2), 63.

    Article  Google Scholar 

  23. Li, C., Yue, G., Wang, X., & Khojastepour, M. A. (2008). LDPC code design for half-duplex cooperative relay. IEEE Transactions on Wireless Communications, 7(11), 4558–4567.

    Article  Google Scholar 

  24. Arikan, E. (2009). Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Transactions on Information Theory, 55(7), 3051–3073.

    Article  Google Scholar 

  25. Andersson, M., Rathi, V., Thobaben, R., Kliewer, J., & Skoglund, M. (2010). Nested polar codes for wiretap and relay channels. IEEE Communications Letters, 14(8), 752–754.

    Article  Google Scholar 

  26. Zhan, Q., Du, M., Wang, Y., & Zhou, F. (2014). Half-duplex relay systems based on polar codes. IET Communications, 8(4), 433–440.

    Article  Google Scholar 

  27. Ejaz, S., FengFan, Y., & Soliman, T. H. (2015). Multi-level construction of polar codes for half-duplex wireless coded-cooperative networks. Frequenz, 69(11–12), 509–517.

    Google Scholar 

  28. Plotkin, M. (1960). Binary codes with specified minimum distance. IRE Transactions on Information Theory, 6(4), 445–450.

    Article  Google Scholar 

  29. Akuon, P., & Xu, H. (2014). Polar coded spatial modulation. IET Communications, 8(9), 1459–1466.

    Article  Google Scholar 

  30. Blasco-Serrano, R., Thobaben, R., Andersson, M., Rathi, V., & Skoglund, M. (2012). Polar codes for cooperative relaying. IEEE Transactions on Communications, 60(11), 3263–3273.

    Article  Google Scholar 

  31. Shin, D. M., Lim, S. C., & Yang, K. (2012). Mapping selection and code construction for \(2^m\)-ary polar-coded modulation. IEEE Communications Letters, 16(6), 905–908.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by National Natural Science Foundation of China under the contract No. 61771241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoaib Mughal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mughal, S., Yang, F., Xu, H. et al. Coded cooperative spatial modulation based on multi-level construction of polar code. Telecommun Syst 70, 435–446 (2019). https://doi.org/10.1007/s11235-018-0485-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-018-0485-6

Keywords

Navigation