Skip to main content

Advertisement

Log in

Greening internet of things for greener and smarter cities: a survey and future prospects

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Tremendous technological developments in the field of internet of things (IoT) have changed the way we live and work. Although the numerous advantages of IoT are enriching our society, it should be reminded that the IoT also contributes to toxic pollution, consumes energy and generates e-waste. These persistent issues place new stress on the smart world and environments. To enhance the benefits and reduce the harmful effects of IoT, there is an increasingly desired to move towards green IoT. Green IoT is seen as the environmentally friendly future of IoT. Therefore, it is necessary to put different desired measures to conserve environmental resources, reduce carbon footprints and promote efficient techniques for energy usage. It is the reason for moving towards green IoT, where the machines, sensors, communications, clouds, and internet operate in synergy towards the common goal of increased energy efficiency and reduced carbon emissions. This work presents a thorough survey of the current ongoing research and potential technologies of green IoT with an intention to provide some directions for future green IoT research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.

    Google Scholar 

  2. Initiative, I. I. (2015). Towards a definition of the Internet of Things (IoT). Revision-1, on-line: http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf.. Accessed, (vol. 27, no. 2017, pp. 479–501).

  3. Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context aware computing for the internet of things: A survey. IEEE Communications Surveys & Tutorials, 16(1), 414–454.

    Google Scholar 

  4. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation Computer Systems, 29(7), 1645–1660.

    Google Scholar 

  5. Chen, X., Ma, M., & Liu, A. (2018). Dynamic power management and adaptive packet size selection for IoT in e-Healthcare. Computers & Electrical Engineering, 65, 357–375.

    Google Scholar 

  6. Pavithra, D., & Balakrishnan, R. (2015). IoT based monitoring and control system for home automation. In 2015 global conference on communication technologies (GCCT), (pp. 169–173). IEEE.

  7. Kodali, R. K. Jain, V., Bose, S., & Boppana, L. (2016). IoT based smart security and home automation system. In 2016 international conference on computing, communication and automation (ICCCA) (pp. 1286–1289). IEEE.

  8. Tellez, M., El-Tawab, S., & Heydari, H. M. (2016). Improving the security of wireless sensor networks in an IoT environmental monitoring system. In 2016 IEEE systems and information engineering design symposium (SIEDS) (pp. 72–77). IEEE.

  9. Shah, J., & Mishra, B. (2016). IoT enabled environmental monitoring system for smart cities. In international conference on internet of things and applications (IOTA) (pp. 383–388). IEEE.

  10. Kong, L., Khan, M. K., Wu, F., Chen, G., & Zeng, P. (2017). Millimeter-wave wireless communications for IoT-cloud supported autonomous vehicles: Overview, design, and challenges. IEEE Communications Magazine, 55(1), 62–68.

    Google Scholar 

  11. Popa, D., Popa, D. D., & Codescu, M.-M. (2019). Reliability for a green internet of things. Buletinul AGIR, 1, 45–50.

    Google Scholar 

  12. Prasad, S. S., & Kumar, C. (2013). A green and reliable internet of things. Communications and Network, 5(01), 44.

    Google Scholar 

  13. Botta, A., De Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and internet of things: A survey. Future Generation Computer Systems, 56, 684–700.

    Google Scholar 

  14. Gu, M., Li, X., & Cao, Y. (2014). Optical storage arrays: A perspective for future big data storage. Light: Science & Applications, 3(5), e177.

    Google Scholar 

  15. Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47, 98–115.

    Google Scholar 

  16. Shuja, J., et al. (2017). Greening emerging IT technologies: Techniques and practices. Journal of Internet Services and Applications, 8(1), 9.

    Google Scholar 

  17. Tao, F., Zuo, Y., Da Xu, L., Lv, L., & Zhang, L. (2014). Internet of things and BOM-based life cycle assessment of energy-saving and emission-reduction of products. IEEE Transactions on Industrial Informatics, 10(2), 1252–1261.

    Google Scholar 

  18. Wang, K., Wang, Y., Sun, Y., Guo, S., & Wu, J. (2016). Green industrial internet of things architecture: An energy-efficient perspective. IEEE Communications Magazine, 54(12), 48–54.

    Google Scholar 

  19. Gelenbe, E., & Caseau, Y. (2015). The impact of information technology on energy consumption and carbon emissions. Ubiquity, 2015, 1.

    Google Scholar 

  20. Arshad, R., Zahoor, S., Shah, M. A., Wahid, A., & Yu, H. (2017). Green IoT: An investigation on energy saving practices for 2020 and beyond. IEEE Access, 5, 15667–15681.

    Google Scholar 

  21. Shaikh, F. K., Zeadally, S., & Exposito, E. (2017). Enabling technologies for green internet of things. IEEE Systems Journal, 11(2), 983–994.

    Google Scholar 

  22. Zhu, C., Leung, V. C., Shu, L., & Ngai, E. C.-H. (2015). Green Internet of Things for smart world. IEEE Access, 3, 2151–2162.

    Google Scholar 

  23. Sala, S. (2009). Information and Communication Technologies for climate change adaptation, with a focus on the agricultural sector. In Thinkpiece for CGIAR Science Forum Workshop on “ICTs transforming agricultural science, research and technology generation,” Wageningen, Netherlands, 2009 (pp. 16–17)

  24. Eakin, H., et al. (2015). Information and communication technologies and climate change adaptation in Latin America and the Caribbean: A framework for action. Climate and Development, 7(3), 208–222.

    Google Scholar 

  25. Upadhyay, A. P., & Bijalwan, A. (2015). Climate change adaptation: Services and role of information communication technology (ICT) in India. American Journal of Environmental Protection, 4(1), 70–74.

    Google Scholar 

  26. Zanamwe, N., & Okunoye, A (2013). Role of information and communication technologies (ICTs) in mitigating, adapting to and monitoring climate change in developing countries. In International conference on ICT for Africa.

  27. Mickoleit, A. (2010). Greener and smarter: ICTs, the environment and climate change. Paris: OECD Publishing.

    Google Scholar 

  28. Reimsbach-Kounatze, C. (2009). Towards green ICT strategies. https://www.oecd.org/sti/ieconomy/towardsgreenictstrategies.htm.

  29. Maksimovic, M. (2018). Greening the future: green internet of things (G-IoT) as a key technological enabler of sustainable development. In Internet of things and big data analytics toward next-generation intelligence (pp. 283–313). Springer.

  30. Pazowski, P. (2015). Green computing: Latest practices and technologies for ICT sustainability. In Joint international conference managing intellectual capital and innovation for sustainable and inclusive society, Bari, Italy (pp. 1853–1860).

  31. Di Salvo, A. L., Agostinho, F., Almeida, C. M., & Giannetti, B. F. (2017). Can cloud computing be labeled as “green”? Insights under an environmental accounting perspective. Renewable and Sustainable Energy Reviews, 69, 514–526.

    Google Scholar 

  32. Murugesan, S. (2008). Harnessing green IT: Principles and practices. IT Professional, 10(1), 24–33.

    Google Scholar 

  33. Rani, S., Talwar, R., Malhotra, J., Ahmed, S. H., Sarkar, M., & Song, H. (2015). A novel scheme for an energy efficient Internet of Things based on wireless sensor networks. Sensors, 15(11), 28603–28626.

    Google Scholar 

  34. Huang, J., Meng, Y., Gong, X., Liu, Y., & Duan, Q. (2014). A novel deployment scheme for green internet of things. IEEE Internet of Things Journal, 1(2), 196–205.

    Google Scholar 

  35. Gapchup, A., Wani, A., Wadghule, A., & Jadhav, S. (2017). Emerging trends of green IoT for smart world. International Journal of Innovative Research in Computer and Communication Engineering, 5(2), 2139–2148.

    Google Scholar 

  36. Lü, Y.-L., Geng, J., & He, G.-Z. (2015). Industrial transformation and green production to reduce environmental emissions: Taking cement industry as a case. Advances in Climate Change Research, 6(3), 202–209.

    Google Scholar 

  37. Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future internet: the internet of things architecture, possible applications and key challenges. In 2012 10th international conference on frontiers of information technology (FIT) (pp. 257–260). IEEE.

  38. Liu, X., & Ansari, N. (2019). Toward green IoT: Energy solutions and key challenges. IEEE Communications Magazine, 57(3), 104–110.

    Google Scholar 

  39. Jalali, F., Khodadustan, S., Gray, C., Hinton, K., & Suits, F. (2017). Greening IoT with fog: A survey. In 2017 IEEE international conference on edge computing (EDGE) (pp. 25–31).

  40. Doknić, V. (2014). Internet of things greenhouse monitoring and automation system. http://193.40.244.77/idu0310/wp-content/uploads/2015/09/140605_Internet-of-Things_Vesna-Doknic.pdf.

  41. Wang, H.-I. (2014). Constructing the green campus within the internet of things architecture. International Journal of Distributed Sensor Networks, 10(3), 804627.

    Google Scholar 

  42. Prasad, R., Ohmori, S., & Simunic, D. (2010). Towards green ICT. Aalborg: River Publishers.

    Google Scholar 

  43. Uddin, M., & Rahman, A. A. (2012). Energy efficiency and low carbon enabler green IT framework for data centers considering green metrics. Renewable and Sustainable Energy Reviews, 16(6), 4078–4094.

    Google Scholar 

  44. Shaikh, F. K., Zeadally, S., & Exposito, E. (2015). Enabling technologies for green internet of things. IEEE Systems Journal, 11(2), 983–994.

    Google Scholar 

  45. Xiaojun, C., Xianpeng, L., & Peng, X. (2015). IOT-based air pollution monitoring and forecasting system. In 2015 international conference on computer and computational sciences (ICCCS) (pp. 257–260). IEEE.

  46. Manna, S., Bhunia, S. S., & Mukherjee, N. (2014). Vehicular pollution monitoring using IoT. In Recent advances and innovations in engineering (ICRAIE) (pp. 1–5). IEEE.

  47. Zupancic, T., Westmacott, C., & Bulthuis, M. (2015). The impact of green space on heat and air pollution in urban communities: A meta-narrative systematic review. BC: David Suzuki Foundation Vancouver.

    Google Scholar 

  48. Bandyopadhyay, D., & Sen, J. (2011). Internet of things: Applications and challenges in technology and standardization. Wireless Personal Communications, 58(1), 49–69.

    Google Scholar 

  49. Murugesan, S., & Gangadharan, G. (2012). Harnessing green IT: Principles and practices. New York: Wiley.

    Google Scholar 

  50. Nandyala, C. S., & Kim, H.-K. (2016). Green IoT agriculture and healthcareapplication (GAHA). International Journal of Smart Home, 10(4), 289–300.

    Google Scholar 

  51. Radu, L.-D. (2016). Determinants of Green ICT adoption in organizations: A theoretical perspective. Sustainability, 8(8), 731.

    Google Scholar 

  52. Ozturk, A., et al. (2011). Green ICT (Information and Communication Technologies): A review of academic and practitioner perspectives. International Journal of eBusiness and eGovernment Studies, 3(1), 1–16.

    Google Scholar 

  53. Occhiuzzi, C., Caizzone, S., & Marrocco, G. (2013). Passive UHF RFID antennas for sensing applications: Principles, methods, and classifcations. IEEE Antennas and Propagation Magazine, 55(6), 14–34.

    Google Scholar 

  54. Amin, Y. (2013). Printable green RFID antennas for embedded sensors. Stockholm: KTH Royal Institute of Technology.

    Google Scholar 

  55. Amin, Y. et al. (2013). Printable RFID antenna with embedded sensor and calibration functions. In Proceedings of the progress in electromagnetics research symposium, Stockholm, Sweden (vol. 1215, p. 567570).

  56. Zelbst, P. J., Sower, V. E., Green, K. W., Jr., & Abshire, R. D. (2011). Radio frequency identification technology utilization and organizational agility. Journal of Computer Information Systems, 52(1), 24–33.

    Google Scholar 

  57. Hubbard, B.,Wang, H., & Leasure, M. (2016). Feasibility study of UAV use for RFID material tracking on construction sites. Presented at the Proceedings of 51st ASC annual international conference proceedings college station, TX, USA.

  58. Allegretti, M., & Bertoldo, S. (2015). Recharging RFID tags for environmental monitoring using UAVs: A feasibility analysis. Wireless Sensor Network, 7(02), 13.

    Google Scholar 

  59. Choi, J. S., Son, B. R., Kang, H. K., & Lee, D. H. (2012). Indoor localization of unmanned aerial vehicle based on passive UHF RFID systems. In 2012 9th international conference on ubiquitous robots and ambient intelligence (URAI) (pp. 188–189). IEEE.

  60. Greco, G., Lucianaz, C., Bertoldo, S., & Allegretti, M. (2015). A solution for monitoring operations in harsh environment: A RFID reader for small UAV. In 2015 international conference on electromagnetics in advanced applications (ICEAA) (pp. 859–862). IEEE.

  61. Namboodiri, V., & Gao, L. (2007). Energy-aware tag anti-collision protocols for RFID systems. In Fifth annual IEEE international conference on pervasive computing and communications, 2007. PerCom’07 (pp. 23–36). IEEE.

  62. Li, T., Wu, S. S., Chen, S., & Yang, M. C. (2012). Generalized energy-efficient algorithms for the RFID estimation problem. IEEE/ACM Transactions on Networking, 20(6), 1978–1990.

    Google Scholar 

  63. Prabhu, B., Balakumar, N., & Antony, A. J. (2017). Wireless sensor network based smart environment applications. IJIRT, 3, 1–10.

    Google Scholar 

  64. Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A wireless sensor network deployment for rural and forest fire detection and verification. Sensors, 9(11), 8722–8747.

    Google Scholar 

  65. Aslan, Y. E., Korpeoglu, I., & Ulusoy, Ö. (2012). A framework for use of wireless sensor networks in forest fire detection and monitoring. Computers, Environment and Urban Systems, 36(6), 614–625.

    Google Scholar 

  66. Bhattacharjee, S., Roy, P., Ghosh, S., Misra, S., & Obaidat, M. S. (2012). Wireless sensor network-based fire detection, alarming, monitoring and prevention system for Bord-and-Pillar coal mines. Journal of Systems and Software, 85(3), 571–581.

    Google Scholar 

  67. Viani, F., Lizzi, L., Rocca, P., Benedetti, M., Donelli, M., & Massa, A. (2008). Object tracking through RSSI measurements in wireless sensor networks. Electronics Letters, 44(10), 653–654.

    Google Scholar 

  68. Han, G., Shen, J., Liu, L., Qian, A., & Shu, L. (2016). TGM-COT: Energy-efficient continuous object tracking scheme with two-layer grid model in wireless sensor networks. Personal and Ubiquitous Computing, 20(3), 349–359.

    Google Scholar 

  69. Han, G., Shen, J., Liu, L., & Shu, L. (2017). BRTCO: A novel boundary recognition and tracking algorithm for continuous objects in wireless sensor networks. IEEE Systems Journal, 12(3), 2056–2065.

    Google Scholar 

  70. Wu, F., Rüdiger, C., & Yuce, M. R. (2017). Real-Time performance of a self-powered environmental IoT sensor network system. Sensors, 17(2), 282.

    Google Scholar 

  71. Trasviña-Moreno, C. A., Blasco, R., Marco, Á., Casas, R., & Trasviña-Castro, A. (2017). Unmanned aerial vehicle based wireless sensor network for marine-coastal environment monitoring. Sensors, 17(3), 460.

    Google Scholar 

  72. Sharma, D. (2017). Low cost experimental set up for real time temperature, humidity monitoring through WSN. International Journal of Engineering Science, 4340.

  73. Prabhu, B., Balakumar, N., & Antony, A. (2017). Evolving constraints in military applications using wireless sensor networks. International Journal of Innovative Research in Computer Science & Technology (IJIRCST), 5(1). https://ssrn.com/abstract=2908031.

  74. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In INFOCOM 2002. Twenty-first annual joint conference of the IEEE computer and communications societies. Proceedings. IEEE (vol. 3, pp. 1567–1576). IEEE.

  75. Anastasi, G., Francesco, M. D., Conti, M., & Passarella, A. (2013). How to prolong the lifetime of WSNs. In Mobile ad hoc and personal communication. Boca Raton: CRC Press.

  76. Azevedo, J., & Santos, F. (2012). Energy harvesting from wind and water for autonomous wireless sensor nodes. IET Circuits, Devices and Systems, 6(6), 413–420.

    Google Scholar 

  77. Eu, Z. A., Tan, H.-P., & Seah, W. K. (2011). Design and performance analysis of MAC schemes for wireless sensor networks powered by ambient energy harvesting. Ad Hoc Networks, 9(3), 300–323.

    Google Scholar 

  78. Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054.

    Google Scholar 

  79. Abedin, S. F., Alam, M. G. R., Haw, R., & Hong, C. S. (2015). A system model for energy efficient green-IoT network. In 2015 international conference on information networking (ICOIN) (pp. 177–182). IEEE.

  80. Sun, K.,. & Ryoo, I. (2015). A study on medium access control scheme for energy efficiency in wireless smart sensor networks. In 2015 international conference on information and communication technology convergence (ICTC) (pp. 623–625). IEEE.

  81. Uzoh, P. C., Li, J., Cao, Z., Kim, J., Nadeem, A., & Han, K. (2015). Energy efficient sleep scheduling for wireless sensor networks. In International conference on algorithms and architectures for parallel processing (pp. 430–444). Springer.

  82. Alsamhi, S., Ma, O., & Ansari, M. (2018). Predictive estimation of the optimal signal strength from unmanned aerial vehicle over internet of things using ANN. arXiv preprint arXiv:1805.07614.

  83. Mehmood, A., & Song, H. (2015). Smart energy efficient hierarchical data gathering protocols for wireless sensor networks. SmartCR, 5(5), 425–462.

    Google Scholar 

  84. Naranjo, P. G. V., Shojafar, M., Mostafaei, H., Pooranian, Z., & Baccarelli, E. (2017). P-SEP: A prolong stable election routing algorithm for energy-limited heterogeneous fog-supported wireless sensor networks. The Journal of Supercomputing, 73(2), 733–755.

    Google Scholar 

  85. Yaacoub, E., Kadri, A., & Abu-Dayya, A. (2012). Cooperative wireless sensor networks for green internet of things. In Proceedings of the 8 h ACM symposium on QoS and security for wireless and mobile networks (pp. 79–80). ACM.

  86. Rekha, R. V., & Sekar, J. R. (2016). An unified deployment framework for realization of green internet of things (GIoT). Middle-East Journal of Scientific Research, 24(2), 187–196.

    Google Scholar 

  87. Prabhu, S. B., Dhasharathi, C., Prabhakaran, R., Kumar, M. R., Feroze, S. W., & Sophia, S. (2014). Environmental monitoring and greenhouse control by distributed sensor Network. International Journal of Advanced Networking and Applications, 5(5), 2060.

    Google Scholar 

  88. Morreale, P., Qi, F., & Croft, P. (2011). A green wireless sensor network for environmental monitoring and risk identification. International Journal of Sensor Networks, 10(1–2), 73–82.

    Google Scholar 

  89. Mahapatra, C., Sheng, Z., Kamalinejad, P., Leung, V. C., & Mirabbasi, S. (2017). Optimal power control in green wireless sensor networks with wireless energy harvesting, wake-up radio and transmission control. IEEE Access, 5, 501–518.

    Google Scholar 

  90. Naeem, M., Pareek, U., Lee, D. C., & Anpalagan, A. (2013). Estimation of distribution algorithm for resource allocation in green cooperative cognitive radio sensor networks. Sensors, 13(4), 4884–4905.

    Google Scholar 

  91. Liu, A., Zhang, Q., Li, Z., Choi, Y.-J., Li, J., & Komuro, N. (2017). A green and reliable communication modeling for industrial internet of things. Computers & Electrical Engineering, 58, 364–381.

    Google Scholar 

  92. Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122.

    Google Scholar 

  93. Baccarelli, E., Naranjo, P. G. V., Scarpiniti, M., Shojafar, M., & Abawajy, J. H. (2017). Fog of everything: Energy-efficient networked computing architectures, research challenges, and a case study. IEEE Access, 5, 9882–9910.

    Google Scholar 

  94. Sivakumar, S., Anuratha, V., & Gunasekaran, S. (2017). Survey on integration of cloud computing and internet of things using application perspective. International Journal of Emerging Research in Management & Technology, 6(4), 101–108.

    Google Scholar 

  95. Zhu, C., Leung, V. C., Wang, K., Yang, L. T., & Zhang, Y. (2017). Multi-method data delivery for green sensor-cloud. IEEE Communications Magazine, 55(5), 176–182.

    Google Scholar 

  96. Jain, A., Mishra, M., Peddoju, S. K., & Jain, N. (2013). Energy efficient computing-green cloud computing. In 2013 international conference on energy efficient technologies for sustainability (ICEETS) (pp. 978–982). IEEE.

  97. Baliga, J., Ayre, R. W., Hinton, K., & Tucker, R. S. (2011). Green cloud computing: Balancing energy in processing, storage, and transport. Proceedings of the IEEE, 99(1), 149–167.

    Google Scholar 

  98. Liu, X.-F., Zhan, Z.-H., & Zhang, J. (2017). An energy aware unified ant colony system for dynamic virtual machine placement in cloud computing. Energies, 10(5), 609.

    Google Scholar 

  99. Sarathe, R., Mishra, A., & Sahu, S. K. (2016). Max-min ant system based approach for intelligent VM migration and consolidation for green cloud computing. International Journal of Computer Applications, 136(13), 15–18.

    Google Scholar 

  100. Alsamhi, S. H., Ma, O., & Ansari, M. S. (2019). Survey on artificial intelligence based techniques for emerging robotic communication. Telecommunication Systems. https://doi.org/10.1007/s11235-019-00561-z.

    Article  Google Scholar 

  101. Alsamhi, S. H., Ma, O., & Ansari, M. S. (2019). Convergence of machine learning and robotics communication in collaboratively assembly: Mobility, connectivity and future prospects. Journal of Intelligent Robotics and Systems (under review).

  102. Wang, C. et al (2018). Method and apparatus for supporting machine-to-machine communications. ed: Google Patents.

  103. Chen, Y., & Wang, W. (2010). Machine-to-machine communication in LTE-A. In 2010 IEEE 72nd vehicular technology conference - fall (pp. 1–4).

  104. Alavikia, Z., & Ghasemi, A. (2018). Collision-aware resource access scheme for LTE-based machine-to-machine communications. IEEE Transactions on Vehicular Technology (pp. 1–1).

  105. Lu, R., Li, X., Liang, X., Shen, X., & Lin, X. (2011). GRS: The green, reliability, and security of emerging machine to machine communications. IEEE Communications Magazine, 49(4), 28–35.

    Google Scholar 

  106. Madakam, S., & Date, H. (2016). Security mechanisms for connectivity of smart devices in the internet of things. In Connectivity frameworks for smart devices (pp. 23–41). Springer.

  107. Valhouli, C. A. (2010). The internet of things: Networked objects and smart devices. The Hammersmith Group Research Report (vol. 20).

  108. Tu, C.-Y., Ho, C.-Y., & Huang, C.-Y. (2011). Energy-efficient algorithms and evaluations for massive access management in cellular based machine to machine communications. In Vehicular Technology Conference (VTC Fall), 2011 IEEE, 2011, (pp. 1–5). IEEE.

  109. Andreev, S., Galinina, O., & Koucheryavy, Y. (2011). Energy-efficient client relay scheme for machine-to-machine communication. In Global telecommunications conference (GLOBECOM 2011), 2011 IEEE (pp. 1–5). IEEE.

  110. Bartoli, A., Dohler, M., Hernández-Serrano, J., Kountouris, A., & Barthel, D. (2011). Low-power low-rate goes long-range: The case for secure and cooperative machine-to-machine communications. In International conference on research in networking (pp. 219–230). Springer.

  111. Datsika, E., Antonopoulos, A., Zorba, N., & Verikoukis, C. (2016). Green cooperative device-to-device communication: A social-aware perspective. IEEE Access, 4, 3697–3707.

    Google Scholar 

  112. Dayarathna, M., Wen, Y., & Fan, R. (2016). Data center energy consumption modeling: A survey. IEEE Communications Surveys & Tutorials, 18(1), 732–794.

    Google Scholar 

  113. Himsoon, T., Siriwongpairat, W. P., Han, Z., & Liu, K. R. (2007). Lifetime maximization via cooperative nodes and relay deployment in wireless networks. IEEE Journal on Selected Areas in Communications, 25(2).

  114. Zhou, M., Cui, Q., Jantti, R., & Tao, X. (2012). Energy-efficient relay selection and power allocation for two-way relay channel with analog network coding. IEEE Communications Letters, 16(6), 816–819.

    Google Scholar 

  115. Niyato, D., Xiao, L., & Wang, P. (2011). Machine-to-machine communications for home energy management system in smart grid. IEEE Communications Magazine, 49(4), 60–65.

    Google Scholar 

  116. Vo, Q. D., Choi, J.-P., Chang, H. M., & Lee, W. C. (2010). Green perspective cognitive radio-based M2M communications for smart meters. In 2010 international conference on information and communication technology convergence (ICTC) (pp. 382–383). IEEE.

  117. Van, D. P., Rimal, B. P., Andreev, S., Tirronen, T., & Maier, M. (2016). Machine-to-machine communications over FiWi enhanced LTE networks: A power-saving framework and end-to-end performance. Journal of Lightwave Technology, 34(4), 1062–1071.

    Google Scholar 

  118. Sun, L., Tian, H., & Xu, L. (2013). A joint energy-saving mechanism for m2m communications in lte-based system. In Wireless communications and networking conference (WCNC), 2013 IEEE (pp. 4706–4711). IEEE.

  119. Ajah, S., Al-Sherbaz, A., Turner, S., & Picton, P. (2015). Machine-to-machine communications energy efficiencies: The implications of different M2M communications specifications. International Journal of Wireless and Mobile Computing, 8(1), 15–26.

    Google Scholar 

  120. Cheng, R. S., Huang, C. M., & Cheng, G. S. (2016). A congestion reduction mechanism using D2D cooperative relay for M2M communication in the LTE-A cellular network. Wireless Communications and Mobile Computing, 16(16), 2477–2494.

    Google Scholar 

  121. Ji, L., Han, B., Liu, M., & Schotten, H. D. (2017). Applying device-to-device communication to enhance IoT services. arXiv preprint arXiv:1705.03734.

  122. Hussain, F., Anpalagan, A., & Naeem, M. (2014). Multi-objective MTC device controller resource optimization in M2M communication. In 2014 27th biennial symposium on communications (QBSC) (pp. 184–188). IEEE.

  123. Alsamhi, S. H., & Rajput, N. (2015). An intelligent HAP for broadband wireless communications: Developments, QoS and applications. International Journal of Electronics and Electrical Engineering, 3(2), 134–143.

    Google Scholar 

  124. Alsamhi, S., & Rajput, N. (2014). HAP antenna radiation pattern for providing coverage and service characteristics. In 2014 international conference on advances in computing, communications and informatics (ICACCI) (pp. 1434–1439). IEEE.

  125. Alsamhi, S., & Rajput, N. (2014). Performance and analysis of propagation models for efficient handoff in high altitude platform system to sustain QoS. In 2014 IEEE students’ conference on electrical, electronics and computer science (pp. 1–6). IEEE.

  126. Alsamhi, S. H., & Rajput, N. (2014). Neural network in intelligent handoff for QoS in HAP and terrestrial systems. International Journal of Materials science and Engineering, 2, 141–146.

    Google Scholar 

  127. Alsamhi, S. H., Ma, O., Ansari, M. S., & Gupta, S. K. (2019). Collaboration of drone and internet of public safety things in smart cities: An overview of QoS and network performance optimization. Drones, 3(1), 13.

    Google Scholar 

  128. Liu, Y., Yang, Z., Yu, R., Xiang, Y., & Xie, S. (2015). An efficient MAC protocol with adaptive energy harvesting for machine-to-machine networks. IEEE access, 3, 358–367.

    Google Scholar 

  129. Abbas, Z., & Yoon, W. (2015). A survey on energy conserving mechanisms for the internet of things: Wireless networking aspects. Sensors, 15(10), 24818–24847.

    Google Scholar 

  130. Cordeschi, N., Shojafar, M., Amendola, D., & Baccarelli, E. (2015). Energy-efficient adaptive networked datacenters for the QoS support of real-time applications. The Journal of Supercomputing, 71(2), 448–478.

    Google Scholar 

  131. Shuja, J., et al. (2016). Survey of techniques and architectures for designing energy-efficient data centers. IEEE Systems Journal, 10(2), 507–519.

    Google Scholar 

  132. Han, N. D., Chung, Y., & Jo, M. (2015). Green data centers for cloud-assisted mobile ad hoc networks in 5G. IEEE Network, 29(2), 70–76.

    Google Scholar 

  133. Roy, A. et al. (2016). Energy-efficient Data Centers and smart temperature control system with IoT sensing. In 2016 IEEE 7th annual information technology, electronics and mobile communication conference (IEMCON) (pp. 1–4). IEEE.

  134. Peoples, C., Parr, G., McClean, S., Scotney, B., & Morrow, P. (2013). Performance evaluation of green data centre management supporting sustainable growth of the internet of things. Simulation Modelling Practice and Theory, 34, 221–242.

    Google Scholar 

  135. Liu, Q., Ma, Y., Alhussein, M., Zhang, Y., & Peng, L. (2016). Green data center with IoT sensing and cloud-assisted smart temperature control system. Computer Networks, 101, 104–112.

    Google Scholar 

  136. Farahnakian, F., et al. (2015). Using ant colony system to consolidate vms for green cloud computing. IEEE Transactions on Services Computing, 8(2), 187–198.

    Google Scholar 

  137. Ashraf, A., & Porres, I. (2017). Multi-objective dynamic virtual machine consolidation in the cloud using ant colony system. arXiv preprint arXiv:1701.00383.

  138. Matre, P., Silakari, S., & Chourasia, U. (2016). Ant colony optimization (ACO) based dynamic VM consolidation for energy efficient cloud computing. International Journal of Computer Science and Information Security, 14(8), 345.

    Google Scholar 

  139. Baccarelli, E., Amendola, D., & Cordeschi, N. (2015). Minimum-energy bandwidth management for QoS live migration of virtual machines. Computer Networks, 93, 1–22.

    Google Scholar 

  140. Amendola, D., Cordeschi, N., & Baccarelli, E. (2016). Bandwidth management VMs live migration in wireless fog computing for 5G networks. In 2016 5th ieee international conference on cloud networking (Cloudnet) (pp. 21–26). IEEE.

  141. Koutitas, G. (2010). Green network planning of single frequency networks. IEEE Transactions on Broadcasting, 56(4), 541–550.

    Google Scholar 

  142. Chan, C. A., Gygax, A. F., Wong, E., Leckie, C. A., Nirmalathas, A., & Kilper, D. C. (2012). Methodologies for assessing the use-phase power consumption and greenhouse gas emissions of telecommunications network services. Environmental Science and Technology, 47(1), 485–492.

    Google Scholar 

  143. Feng, W., Alshaer, H., & Elmirghani, J. M. (2010). Green information and communication technology: Energy efficiency in a motorway model. IET Communications, 4(7), 850–860.

    Google Scholar 

  144. Chih-Lin, I., Rowell, C., Han, S., Xu, Z., Li, G., & Pan, Z. (2014). Toward green and soft: A 5G perspective. IEEE Communications Magazine, 52(2), 66–73.

    Google Scholar 

  145. Mao, G. (2017). 5G green mobile communication networks. China Communications, 14(2), 183–184.

    Google Scholar 

  146. Abrol, A., & Jha, R. K. (2016). Power optimization in 5G networks: A step towards GrEEn communication. IEEE Access, 4, 1355–1374.

    Google Scholar 

  147. Alsamhi, S. H. A. M. (2015). Quality of service (QoS) enhancement techniques in high altitude platform (HAP) based communication networks. IIT (BHU) Varanasi.

  148. Alsamhi, S., & Rajput, N. (2016). An efficient channel reservation technique for improved QoS for mobile communication deployment using high altitude platform. Wireless Personal Communications, 91(3), 1095–1108.

    Google Scholar 

  149. Alsamhi, S., & Rajput, N. (2015). An intelligent hand-off algorithm to enhance quality of service in high altitude platforms using neural network. Wireless Personal Communications, 82(4), 2059–2073.

    Google Scholar 

  150. Alsamhi, S., & Rajput, N. (2016). Implementation of call admission control technique in HAP for enhanced QoS in wireless network deployment. Telecommunication Systems, 63(2), 141–151.

    Google Scholar 

  151. Alsamhi, S., Ansari, M., Hebah, M., Ahmed, A., Hatem, A., & Alasali, M. (2018). Adaptive handoff prediction and appreciate decision using ANFIS between terrestrial communication and HAP.

  152. Zhao, L., Al-Dubai, A., Li, X., Chen, G., & Min, G. (2017). A new efficient cross-layer relay node selection model for wireless community mesh networks. Computers & Electrical Engineering, 61, 361–372.

    Google Scholar 

  153. Li, J., Liu, Y., Zhang, Z., Ren, J., & Zhao, N. (2017). Towards green IoT networking: Performance optimization of network coding based communication and reliable storage. IEEE Access.

  154. Zhou, L., et al. (2016). Green cell planning and deployment for small cell networks in smart cities. Ad Hoc Networks, 43, 30–42.

    Google Scholar 

  155. Wang, J., Hu, C., & Liu, A. (2017). Comprehensive optimization of energy consumption and delay performance for green communication in internet of things. Mobile Information Systems, vol. 2017.

  156. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Google Scholar 

  157. Keshav, S., & Rosenberg, C. (2011). How internet concepts and technologies can help green and smarten the electrical grid. ACM SIGCOMM Computer Communication Review, 41(1), 109–114.

    Google Scholar 

  158. Adelin, A., Owezarski, P., & Gayraud, T. (2010). On the impact of monitoring router energy consumption for greening the internet. In 2010 11th IEEE/ACM international conference on grid computing (GRID) (pp. 298–304). IEEE.

  159. Baldi., M., & Ofek, Y. (2009). Time for a” greener” internet”. In IEEE international conference on communications workshops, 2009. ICC Workshops 2009 (pp. 1–6). IEEE.

  160. Zhang, J., Wang, X.,& Huang, M. (2014). A Dynamic topology management mechanism in green internet. In 2014 13th international symposium on distributed computing and applications to business, engineering and science (DCABES) (pp. 203–207). IEEE.

  161. Suh, Y., Kim, K., Kim, A., & Shin, Y. (2015). A study on impact of wired access networks for green internet. Journal of Network and Computer Applications, 57, 156–168.

    Google Scholar 

  162. Suh, Y., Choi, J., Seo, C., & Shin, Y. (2014). A study on energy savings potential of data network equipment for a green internet. In 2014 16th international conference on advanced communication technology (ICACT) (pp. 1146–1151). IEEE.

  163. Yang, Y.,Wang, D., Xu, M., & Li, S. (2013). Hop-by-hop computing for green Internet routing. In 2013 21st IEEE international conference on network protocols (ICNP) (pp. 1–10). IEEE.

  164. Yang, Y,Wang, D., Pan, D., & Xu, M. (2016). Wind blows, traffic flows: Green internet routing under renewable energy. In IEEE INFOCOM 2016-The 35th annual IEEE international conference on computer communications (pp. 1–9). IEEE.

  165. Hoque, M. A., Siekkinen, M., & Nurminen, J. K. (2014). Energy efficient multimedia streaming to mobile devices—A survey. IEEE Communications Surveys & Tutorials, 16(1), 579–597.

    Google Scholar 

  166. Zhu, C., Yang, L. T., Shu, L., Rodrigues, J. J., & Hara, T. (2012). A geographic routing oriented sleep scheduling algorithm in duty-cycled sensor networks. In 2012 IEEE international conference on communications (ICC) (pp. 5473–5477). IEEE.

  167. Alvi, S. A, Shah, G. A., & Mahmood, W (2015). Energy efficient green routing protocol for internet of multimedia things. In 2015 IEEE tenth international conference on intelligent sensors, sensor networks and information processing (ISSNIP) (pp. 1–6). IEEE.

  168. Sample, A. P., Yeager, D. J., Powledge, P. S., & Smith, J. R. (2007). Design of a passively-powered, programmable sensing platform for UHF RFID systems. In IEEE international conference on RFID, 2007 (pp. 149–156). IEEE.

  169. Shu, L., Zhang, Y., Yang, L. T., Wang, Y., Hauswirth, M., & Xiong, N. (2010). TPGF: Geographic routing in wireless multimedia sensor networks. Telecommunication Systems, 44(1–2), 79–95.

    Google Scholar 

  170. Zhu, C., Yang, L. T., Shu, L., Leung, V. C., Rodrigues, J. J., & Wang, L. (2014). Sleep scheduling for geographic routing in duty-cycled mobile sensor networks. IEEE Transactions on Industrial Electronics, 61(11), 6346–6355.

    Google Scholar 

  171. Sheng, Z., Fan, J., Liu, C. H., Leung, V. C., Liu, X., & Leung, K. K. (2015). Energy-efficient relay selection for cooperative relaying in wireless multimedia networks. IEEE Transactions on Vehicular Technology, 64(3), 1156–1170.

    Google Scholar 

  172. Karakus, C., Gurbuz, A. C., & Tavli, B. (2013). Analysis of energy efficiency of compressive sensing in wireless sensor networks. IEEE Sensors Journal, 13(5), 1999–2008.

    Google Scholar 

  173. Yoo, S.-J., Park, J.-H., Kim, S.-H., & Shrestha, A. (2016). Flying path optimization in UAV-assisted IoT sensor networks. ICT Express, 2(3), 140–144.

    Google Scholar 

  174. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2015). Drone small cells in the clouds: Design, deployment and performance analysis. In Global communications conference (GLOBECOM), 2015 IEEE (pp. 1–6). IEEE.

  175. Alsamhi, S. H., Ma, O., Ansari, M. S., & Almalki, F. (2019). Survey on collaborative smart drones and internet of things for improving smartness of smart cities. IEEE Access.

  176. Cao, H.-R., Yang, Z., Yue, X.-J., & Liu, Y.-X. (2017). An optimization method to improve the performance of unmanned aerial vehicle wireless sensor networks. International Journal of Distributed Sensor Networks, 13(4), 1550147717705614.

    Google Scholar 

  177. Cao, H., Liu, Y., Yue, X., & Zhu, W. (2017). Cloud-assisted UAV data collection for multiple emerging events in distributed WSNs. Sensors, 17(8), 1818.

    Google Scholar 

  178. Dong, M., Ota, K., Lin, M., Tang, Z., Du, S., & Zhu, H. (2014). UAV-assisted data gathering in wireless sensor networks. The Journal of Supercomputing, 70(3), 1142–1155.

    Google Scholar 

  179. Zorbas, D., Razafindralambo, T., & Guerriero, F. (2013). Energy efficient mobile target tracking using flying drones. Procedia Computer Science, 19, 80–87.

    Google Scholar 

  180. Sharma, V., You, I., & Kumar, R. (2016). Energy efficient data dissemination in multi-UAV coordinated wireless sensor networks. Mobile Information Systems, 2016, 8475820. https://doi.org/10.1155/2016/8475820.

    Article  Google Scholar 

  181. Uragun, B. (2011). Energy efficiency for unmanned aerial vehicles. In 2011 10th international conference on machine learning and applications and workshops (ICMLA) (vol. 2, pp. 316–320). IEEE.

  182. Choi, D. H., Kim, S. H., & Sung, D. K. (2014). Energy-efficient maneuvering and communication of a single UAV-based relay. IEEE Transactions on Aerospace and Electronic Systems, 50(3), 2320–2327.

    Google Scholar 

  183. Yu, Y., Lee, S., Lee, J., Cho, K., & Park, S. (2016). Design and implementation of wired drone docking system for cost-effective security system in IoT environment. In 2016 IEEE international conference on consumer electronics (ICCE) (pp. 369–370). IEEE.

  184. Seo, S.-H., Choi, J.-I., & Song, J. (2017). Secure utilization of beacons and UAVs in emergency response systems for building fire hazard. Sensors, 17(10), 2200.

    Google Scholar 

  185. Fujii, K., Higuchi, K, & Rekimoto, J (2013). Endless flyer: a continuous flying drone with automatic battery replacement. In Ubiquitous intelligence and computing, 2013 IEEE 10th international conference on and 10th international conference on autonomic and trusted computing (UIC/ATC) (pp. 216–223). IEEE.

  186. Villa, T. F., Salimi, F., Morton, K., Morawska, L., & Gonzalez, F. (2016). Development and validation of a UAV based system for air pollution measurements. Sensors, 16(12), 2202.

    Google Scholar 

  187. Wang, J., Schluntz, E., Otis, B., & Deyle, T. (2015). A new vision for smart objects and the internet of things: Mobile robots and long-range UHF RFID sensor tags. arXiv preprint arXiv:1507.02373.

  188. Hamilton, A., & Magdalene, A. H. S. (2017). Study of solar powered unmanned aerial vehicle to detect greenhouse gases by using wireless sensor network technology. Journal of Science and Engineering Education, 2, 1–11. ISSN: 2455-5061.

  189. Klimkowska, A., Lee, I., & Choi, K. (2016). Possibilities of UAS for maritime monitoring. In ISPRS-international archives of the photogrammetry, remote sensing and spatial information sciences (pp. 885–891)

  190. Villa, T. F., Gonzalez, F., Miljievic, B., Ristovski, Z. D., & Morawska, L. (2016). An overview of small unmanned aerial vehicles for air quality measurements: Present applications and future prospectives. Sensors, 16(7), 1072.

    Google Scholar 

  191. Telesetsky, A. (2016). Navigating the legal landscape for environmental monitoring by unarmed aerial vehicles. Geo. Wash. J. Energy & Envtl. L, 7, 140.

    Google Scholar 

  192. Alvear, O., Calafate, C. T., Hernández, E., Cano, J.-C., & Manzoni, P. (2015). Mobile pollution data sensing using UAVs. in Proceedings of the 13th international conference on advances in mobile computing and multimedia (pp. 393–397). ACM.

  193. Alvear, O. A., Zema, N. R., Natalizio, E., & Calafate, C. T. (2017). A chemotactic pollution-homing UAV guidance system. In Wireless communications and mobile computing conference (IWCMC), 2017 13th international (pp. 2115–2120). IEEE.

  194. Alvear, O., Zema, N. R., Natalizio, E., & Calafate, C. T. (2017). Using UAV-based systems to monitor air pollution in areas with poor accessibility. Journal of Advanced Transportation, 2017, 1–14.

    Google Scholar 

  195. Koo, V. C., et al. (2012). A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring. Progress in Electromagnetics Research, 122, 245–268.

    Google Scholar 

  196. Šmídl, V., & Hofman, R. (2013). Tracking of atmospheric release of pollution using unmanned aerial vehicles. Atmospheric Environment, 67, 425–436.

    Google Scholar 

  197. Zang, W., Lin, J., Wang, Y., & Tao, H. (2012). Investigating small-scale water pollution with UAV remote sensing technology. In World automation congress (WAC), 2012 (pp. 1–4). IEEE.

  198. Bronk, C., Lingamneni, A., & Palem, K. (2010). Innovation for sustainability in information and communication technologies (ICT). James A: Baker III Institute for Public Policy, Rice University.

    Google Scholar 

  199. Aslam, S., Hasan, N. U., Shahid, A., Jang, J. W., & Lee, K.-G. (2016). Device centric throughput and QoS optimization for IoTsin a smart building using CRN-techniques. Sensors, 16(10), 1647.

    Google Scholar 

  200. Kulkarni, N., & Abhang, S. (2017). Green industrial automation based on IOT: A survey. International Journal of Emerging Trends in Science and Technology, 4(8), 5805–5810.

    Google Scholar 

  201. Kalarthi, Z. M. (2016). A review paper on smart health care system using Internet of Things. International Journal of Research in Engineering and Technology (IJRET), 5, 80–83.

    Google Scholar 

  202. Islam, S. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K.-S. (2015). The internet of things for health care: A comprehensive survey. IEEE Access, 3, 678–708.

    Google Scholar 

  203. Niewolny, D. (2013). How the internet of things is revolutionizing healthcare. White paper (pp. 1–8).

  204. Ullah, F., Habib, M. A., Farhan, M., Khalid, S., Durrani, M. Y., & Jabbar, S. (2017). Semantic interoperability for big-data in heterogeneous IoT infrastructure for healthcare. Sustainable Cities and Society, 34, 90–96.

    Google Scholar 

  205. Sun, F., Yi, C., & Li, Y. J. I. C. (2017). Battery-friendly scheduling policy in MAC layer for WBAN data packets transmission. IET Communication, 11(9), 1423–1430.

    Google Scholar 

  206. Sun, F., & Li, Y. (2015). Power aware topology management and congestion control mechanism in high medical QoS WHMNs. In International conference on biomedical and health informatics (pp. 145–148). Springer.

  207. Zang, W., Miao, F., Gravina, R., et al. (2019). CMDP-based intelligent transmission for wireless body area network in remote health monitoring. Neural Computing and Applications. https://doi.org/10.1007/s00521-019-04034-x.

    Article  Google Scholar 

  208. Yi, C., Wang, L., & Li, Y. (2015). Energy efficient transmission approach for WBAN based on threshold distance. IEEE Sensors Journal, 15(9), 5133–5141.

    Google Scholar 

  209. Sodhro, A. H., Li, Y., & Shah, M. A. J. I. C. (2016). Energy-efficient adaptive transmission power control for wireless body area networks. IET Communications, 10(1), 81–90.

    Google Scholar 

  210. Sodhro, A. H., Li, Y., & Shah, M. A. (2017). Green and friendly media transmission algorithms for wireless body sensor networks. Multimedia Tools and Applications, 76(19), 20001–20025.

    Google Scholar 

  211. Zang, W., Zhang, S., & Li, Y. (2016). An accelerometer-assisted transmission power control solution for energy-efficient communications in WBAN. IEEE Journal on Selected Areas in Communications, 34(12), 3427–3437.

    Google Scholar 

  212. Li, L., et al. (2011). The applications of WiFi-based wireless sensor network in internet of things and smart grid. In 2011 6th IEEE Conference on Industrial Electronics and Applications (pp. 789–793).

  213. Yang, X., et al. (2015). Towards a low-cost remote memory attestation for the smart grid. Sensors, 15(8), 20799–20824.

    Google Scholar 

  214. Liu, Y., Weng, X., Wan, J., Yue, X., Song, H., & Vasilakos, A. V. (2017). Exploring data validity in transportation systems for smart cities. IEEE Communications Magazine, 55(5), 26–33.

    Google Scholar 

  215. Karnouskos, S. (2010). The cooperative internet of things enabled smart grid. In Proceedings of the 14th IEEE international symposium on consumer electronics (ISCE2010), June (pp. 07–10).

  216. Petrolo, R., Loscrì, V., & Mitton, N. (2015). Towards a smart city based on cloud of things, a survey on the smart city vision and paradigms. Transactions on Emerging Telecommunications Technologies, 28, e2931.

    Google Scholar 

  217. Heo, T., et al. (2014). Escaping from ancient Rome! Applications and challenges for designing smart cities. Transactions on Emerging Telecommunications Technologies, 25(1), 109–119.

    Google Scholar 

  218. Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustainable Cities and Society, 31, 183–212.

    Google Scholar 

  219. Sathyamoorthy, P., Ngai, E. C.-H., Hu, X., & Leung, V. C. (2015). Energy efficiency as an orchestration service for mobile Internet of Things. In Cloud computing technology and science (CloudCom), 2015 IEEE 7th international conference on (pp. 155–162). IEEE.

  220. Ramaswamy, P. (2016) Iot smart parking system for reducing green house gas emission. In Recent trends in information technology (ICRTIT), 2016 international conference on (pp. 1–6). IEEE.

  221. Popa, M., & Marcu, A. (2012). A Solution for street lighting in smart cities. Carpathian Journal of Electronic and Computer Engineering, 5, 91.

    Google Scholar 

  222. Vegni, A. M. Biagi, M., & Cusani, R. (2013). Smart vehicles, technologies and main applications in vehicular ad hoc networks. In Vehicular technologies-deployment and applications. InTech.

  223. Su, K., Li, J., & Fu, H. (2011) Smart city and the applications. In Electronics, communications and control (ICECC), 2011 international conference on (pp. 1028–1031). IEEE.

  224. Maksimovic, M. (2017). The role of green internet of things (G-IoT) and big data in making cities smarter, safer and more sustainable,”. International Journal of Computing and Digital Systems, 6(4), 175–184.

    Google Scholar 

  225. Sun, Y., Song, H., Jara, A. J., & Bie, R. (2016). Internet of things and big data analytics for smart and connected communities. IEEE Access, 4, 766–773.

    Google Scholar 

  226. Song, H., Srinivasan, R., Jeschke, S., & Sookoor, T. (2017). Smart cities: Foundations, principles and applications. Hoboken: Wiley.

    Google Scholar 

  227. Jiang, D., Zhang, P., Lv, Z., & Song, H. (2016). Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things Journal, 3(6), 1437–1447.

    Google Scholar 

  228. Ejaz, W., Naeem, M., Shahid, A., Anpalagan, A., & Jo, M. (2017). Efficient energy management for the internet of things in smart cities. IEEE Communications Magazine, 55(1), 84–91.

    Google Scholar 

  229. Maksiimovici, M., & Omanovic-Miklicanin, E. (2017). Green internet of things and green nanotechnology role in realizing smart and sustainavle agriculture . In Presented at the VIII international scientific agriculture symposium “AGROSYM 2017”, Jahorina, Bosnia and Herzegovina.

  230. Gani, A., Siddiqa, A., Shamshirband, S., & Hanum, F. (2016). A survey on indexing techniques for big data: taxonomy and performance evaluation. Knowledge and Information Systems, 46(2), 241–284.

    Google Scholar 

  231. Caviglione, L., Merlo, A., & Migliardi, M. (2011). What is green security? In 2011 7th international conference on information assurance and security (IAS) (pp. 366–371).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Alsamhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsamhi, S.H., Ma, O., Ansari, M.S. et al. Greening internet of things for greener and smarter cities: a survey and future prospects. Telecommun Syst 72, 609–632 (2019). https://doi.org/10.1007/s11235-019-00597-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00597-1

Keywords

Navigation