Skip to main content
Log in

Compact Sine Cosine Algorithm applied in vehicle routing problem with time window

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, the compact Sine Cosine Algorithm (cSCA) is proposed. The cSCA algorithm is not based on population, but simulates the behavior of the actual population through a probability model called virtual population. Compared with the original algorithm, the cSCA algorithm takes up less memory space. However, frequent sampling may lead to poor solution quality. In view of this situation, this paper introduces the intergenerational generation sampling mechanism to improve the cSCA algorithm. Through the CEC2013 function set test, compared with the original SCA algorithm and other compact algorithms, the algorithm proposed in this paper can show strong solving ability. Finally, this paper describes how to apply the proposed algorithm and the SCA algorithm to solve the vehicle routing problem with time window in transportation. The quality of the solution is further improved by introducing the relocate operator. Through Solomon standard test data, the calculation performance of the algorithms is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for the flexible job-shop scheduling problem. Computers & Operations Research, 35(10), 3202–3212.

    Article  Google Scholar 

  2. Nazarahari, M., Khanmirza, E., & Doostie, S. (2019). Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm. Expert Systems with Applications, 115, 106–120.

    Article  Google Scholar 

  3. Zhou, X., Wu, Z., Wang, H., & Rahnamayan, S. (2014). Enhancing differential evolution with role assignment scheme. Soft Computing, 18(11), 2209–2225.

    Article  Google Scholar 

  4. Tarkhaneh, O., & Shen, H. (2019). An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation. Expert Systems with Applications, 138, 112820.

    Article  Google Scholar 

  5. Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57.

    Article  Google Scholar 

  6. Cl, S., Jc, Z., & Js, P. (2011). An improved vector particle swarm optimization for constrained optimization problems. Information Sciences, 181(6), 1153–1163.

    Article  Google Scholar 

  7. Sun, C., Zeng, J., Pan, J., Xue, S., & Jin, Y. (2013). A new fitness estimation strategy for particle swarm optimization. Information Sciences, 221, 355–370.

    Article  Google Scholar 

  8. Chu, S. C., Tsai, P., & Pan, J. S. (2006). Cat swarm optimization. In Q. Yang & G. Webb (Eds.), PRICAI 2006: Trends in Artificial Intelligence. PRICAI 2006. Lecture Notes in Computer Science (Vol. 4099). Berlin, Heidelberg: Springer.

  9. Tsai, P. W., Pan, J. S., Chen, S. M., Liao, B. Y., & Hao, S. P. (2008). Parallel cat swarm optimization (Vol. 6, pp. 3328–3333).

  10. Yang, X., & Hossein Gandomi, A. (2012). Bat algorithm: A novel approach for global engineering optimization. Engineering Computations, 29(5), 464–483. https://doi.org/10.1108/02644401211235834.

    Article  Google Scholar 

  11. Cai, X., Wang, H., Cui, Z., Cai, J., Xue, Y., & Wang, L. (2018). Bat algorithm with triangle-flipping strategy for numerical optimization. International Journal of Machine Learning and Cybernetics, 9(2), 199–215.

    Article  Google Scholar 

  12. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  13. Hu, P., Pan, J. S., Chu, S. C., Chai, Q. W., Liu, T., & Li, Z. C. (2019). New hybrid algorithms for prediction of daily load of power network. Applied Sciences, 9(21), 4514.

    Article  Google Scholar 

  14. Pan, J. S., Hu, P., & Chu, S. C. (2019). Novel parallel heterogeneous meta-heuristic and its communication strategies for the prediction of wind power. Processes, 7(11), 845.

    Article  Google Scholar 

  15. Hu, P., Pan, J. S., & Chu, S. C. (2020). Improved binary grey wolf optimizer and its application for feature selection. Knowledge-Based Systems, 195, 105746. https://doi.org/10.1016/j.knosys.2020.105746.

    Article  Google Scholar 

  16. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Article  Google Scholar 

  17. Chai, Q. W., Chu, S. C., Pan, J. S., Hu, P., & Zheng, W. M. (2020). A parallel WOA with two communication strategies applied in DV-Hop localization method. EURASIP Journal on Wireless Communications and Networking, 1, 1–10.

    Google Scholar 

  18. Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495–513.

    Article  Google Scholar 

  19. Wang, X., Pan, J. S., & Chu, S. C. (2020). A parallel multi-verse optimizer for application in multilevel image segmentation. IEEE Access, 8, 32018–32030.

    Article  Google Scholar 

  20. Meng, Z., Pan, J. S., & Xu, H. (2016). Quasi-affine transformation evolutionary (QUATRE) algorithm: A cooperative swarm based algorithm for global optimization. Knowledge-Based Systems, 109, 104–121.

    Article  Google Scholar 

  21. Meng, Z., & Pan, J. S. (2018). Quasi-affine transformation evolution with external archive (QUATRE-EAR): An enhanced structure for differential evolution. Knowledge-Based Systems, 155, 35–53.

    Article  Google Scholar 

  22. Du, Z. G., Pan, J. S., Chu, S. C., Luo, H. J., & Hu, P. (2020). Quasi-affine transformation evolutionary algorithm with communication schemes for application of RSSI in wireless sensor networks. IEEE Access, 8, 8583–8594.

    Article  Google Scholar 

  23. Ezugwu, A. E., & Prayogo, D. (2019). Symbiotic organisms search algorithm: Theory, recent advances and applications. Expert Systems with Applications, 119, 184–209.

    Article  Google Scholar 

  24. Chu, S. C., Du, Z. G., & Pan, J. S. (2020). Symbiotic organism search algorithm with multi-group quantum-behavior communication scheme applied in wireless sensor networks. Applied Sciences, 10(3), 930.

    Article  Google Scholar 

  25. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

    Article  Google Scholar 

  26. Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133.

    Article  Google Scholar 

  27. Qu, C., Zeng, Z., Dai, J., Yi, Z., & He, W. (2018). A modified sine–cosine algorithm based on neighborhood search and greedy levy mutation. Computational Intelligence and Neuroscience. https://doi.org/10.1016/j.knosys.2020.105746.

    Article  Google Scholar 

  28. Rizk-Allah, R. M. (2018). Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems. Journal of Computational Design and Engineering, 5(2), 249–273.

    Article  Google Scholar 

  29. Gupta, S., Deep, K., Mirjalili, S., & Kim, J. H. (2020). A modified sine cosine algorithm with novel transition parameter and mutation operator for global optimization. Expert Systems with Applications, 154, 113395.

    Article  Google Scholar 

  30. Chu, S. C., Xue, X., Pan, J. S., & Wu, X. (2020). Optimizing ontology alignment in vector space. Journal of Internet Technology, 21(1), 15–22.

    Google Scholar 

  31. Harik, G. R., Lobo, F. G., & Goldberg, D. E. (1999). The compact genetic algorithm. IEEE Transactions on Evolutionary Computation, 3(4), 287–297.

    Article  Google Scholar 

  32. Mininno, E., Cupertino, F., & Naso, D. (2008). Real-valued compact genetic algorithms for embedded microcontroller optimization. IEEE Transactions on Evolutionary Computation, 12(2), 203–219.

    Article  Google Scholar 

  33. Mininno, E., Neri, F., Cupertino, F., & Naso, D. (2010). Compact differential evolution. IEEE Transactions on Evolutionary Computation, 15(1), 32–54.

    Article  Google Scholar 

  34. Sui, X., Chu, S. C., Pan, J. S., & Luo, H. (2020). Parallel compact differential evolution for optimization applied to image segmentation. Applied Sciences, 10(6), 2195.

    Article  Google Scholar 

  35. Neri, F., Mininno, E., & Iacca, G. (2013). Compact particle swarm optimization. Information Sciences, 239, 96–121.

    Article  Google Scholar 

  36. Tian, A. Q., Chu, S. C., Pan, J. S., Cui, H., & Zheng, W. M. (2020). A compact pigeon-inspired optimization for maximum short-term generation mode in cascade hydroelectric power station. Sustainability, 12(3), 767.

    Article  Google Scholar 

  37. Pan, J. S., Song, P. C., Chu, S. C., & Peng, Y. J. (2020). Improved compact cuckoo search algorithm applied to location of drone logistics hub. Mathematics, 8(3), 333.

    Article  Google Scholar 

  38. Wang, H. W., Chen, C. H., Cheng, D. Y., Lin, C. H., & Lo, C. C. (2015). A real-time pothole detection approach for intelligent transportation system. Mathematical Problems in Engineering. https://doi.org/10.1155/2015/869627.

    Article  Google Scholar 

  39. Chen, C. H. (2018). An arrival time prediction method for bus system. IEEE Internet of Things Journal, 5(5), 4231–4232.

    Article  Google Scholar 

  40. Wang, W., Wu, B., Zhao, Y., & Feng, D. (2006). Particle swarm optimization for open vehicle routing problem. In D. S. Huang, K. Li, & G. W. Irwin (Eds.), Computational Intelligence. ICIC 2006. Lecture Notes in Computer Science (Vol. 4114). Berlin, Heidelberg: Springer.

  41. Prosser, P., & Shaw, P. (1996). Study of greedy search with multiple improvement heuristics for vehicle routing problems. Technical report, RR96/201, Department of Computer Science, Glasgow, Scotland: University of Strathclyde.

  42. Tan, K. C., Lee, L. H., Zhu, Q., & Ou, K. (2001). Heuristic methods for vehicle routing problem with time windows. Artificial Intelligence in Engineering, 15(3), 281–295.

    Article  Google Scholar 

  43. Kallehauge, B. (2008). Formulations and exact algorithms for the vehicle routing problem with time windows. Computers & Operations Research, 35(7), 2307–2330.

    Article  Google Scholar 

  44. Baldacci, R., Mingozzi, A., & Roberti, R. (2012). Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints. European Journal of Operational Research, 218(1), 1–6.

    Article  Google Scholar 

  45. Bard, J. F., Kontoravdis, G., & Yu, G. (2002). A branch-and-cut procedure for the vehicle routing problem with time windows. Transportation Science, 36(2), 250–269.

    Article  Google Scholar 

  46. Bettinelli, A., Ceselli, A., & Righini, G. (2011). A branch-and-cut-and-price algorithm for the multi-depot heterogeneous vehicle routing problem with time windows. Transportation Research Part C: Emerging Technologies, 19(5), 723–740.

    Article  Google Scholar 

  47. Bruglieri, M., Mancini, S., & Pisacane, O. (2021). A more efficient cutting planes approach for the green vehicle routing problem with capacitated alternative fuel stations. Optimization Letters. https://doi.org/10.1007/s11590-021-01714-3.

    Article  Google Scholar 

  48. Cook, W., & Rich, J. L. (1999). A parallel cutting-plane algorithm for the vehicle routing problem with time windows. Technical report. https://hdl.handle.net/1911/101910

  49. Moradi, B. (2020). The new optimization algorithm for the vehicle routing problem with time windows using multi-objective discrete learnable evolution model. Soft Computing, 24(9), 6741–6769.

  50. Afshar-Nadjafi, B., & Afshar-Nadjafi, A. (2017). A constructive heuristic for time-dependent multi-depot vehicle routing problem with time-windows and heterogeneous fleet. Journal of King Saud University-Engineering Sciences, 29(1), 29–34.

    Article  Google Scholar 

  51. Mancini, S. (2017). A combined multistart random constructive heuristic and set partitioning based formulation for the vehicle routing problem with time dependent travel times. Computers & Operations Research, 88, 290–296.

    Article  Google Scholar 

  52. Dixit, A., Mishra, A., & Shukla, A. (2019). Vehicle routing problem with time windows using meta-heuristic algorithms: A survey. In N. Yadav, A. Yadav, J. Bansal, K. Deep, & J. Kim (Eds.), Harmony search and nature inspired optimization algorithms. Advances in Intelligent Systems and Computing (Vol. 741). Singapore: Springer.

  53. Bräysy, O., & Gendreau, M. (2005). Vehicle routing problem with time windows, part II: Metaheuristics. Transportation Science, 39(1), 119–139.

    Article  Google Scholar 

  54. Lysgaard, J. (1997). Clarke & Wright’s savings algorithm (p. 44). The Aarhus School of Business: Department of Management Science and Logistics.

  55. Ding, Q., Hu, X., Sun, L., & Wang, Y. (2012). An improved ant colony optimization and its application to vehicle routing problem with time windows. Neurocomputing, 98, 101–107.

    Article  Google Scholar 

  56. Tavakkoli-Moghaddam, R., Gazanfari, M., Alinaghian, M., Salamatbakhsh, A., & Norouzi, N. (2011). A new mathematical model for a competitive vehicle routing problem with time windows solved by simulated annealing. Journal of Manufacturing Systems, 30(2), 83–92.

    Article  Google Scholar 

  57. Berger, J., & Barkaoui, M. (2004). A parallel hybrid genetic algorithm for the vehicle routing problem with time windows. Computers & Operations Research, 31(12), 2037–2053.

    Article  Google Scholar 

  58. Bräysy, O., & Gendreau, M. (2002). Tabu search heuristics for the vehicle routing problem with time windows. Top, 10(2), 211–237.

    Article  Google Scholar 

  59. Gong, Y. J., Zhang, J., Liu, O., Huang, R. Z., Chung, H. S. H., & Shi, Y. H. (2011). Optimizing the vehicle routing problem with time windows: A discrete particle swarm optimization approach. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(2), 254–267.

    Article  Google Scholar 

  60. Zhang, K., He, F., Zhang, Z., Lin, X., & Li, M. (2020). Multi-vehicle routing problems with soft time windows: A multi-agent reinforcement learning approach. Transportation Research Part C: Emerging Technologies, 121, 102861.

    Article  Google Scholar 

  61. Chen, B., Qu, R., Bai, R., & Laesanklang, W. (2020). A variable neighborhood search algorithm with reinforcement learning for a real-life periodic vehicle routing problem with time windows and open routes. RAIRO-Operations Research, 54(5), 1467–1494.

    Article  Google Scholar 

  62. Devarapalli, R., & Bhattacharyya, B. (2020). A hybrid modified grey wolf optimization-sine cosine algorithm-based power system stabilizer parameter tuning in a multimachine power system. Optimal Control Applications and Methods, 41(4), 1143–1159.

    Article  Google Scholar 

  63. Attia, A. F., El Sehiemy, R. A., & Hasanien, H. M. (2018). Optimal power flow solution in power systems using a novel sine–cosine algorithm. International Journal of Electrical Power & Energy Systems, 99, 331–343.

    Article  Google Scholar 

  64. Wang, J., Yang, W., Du, P., & Niu, T. (2018). A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm. Energy Conversion and Management, 163, 134–150.

    Article  Google Scholar 

  65. Oliva, D., Hinojosa, S., Abd Elaziz, M., & Ortega-Sánchez, N. (2018). Context based image segmentation using antlion optimization and sine cosine algorithm. Multimedia Tools and Applications, 77(19), 25761–25797.

    Article  Google Scholar 

  66. Das, S., Bhattacharya, A., & Chakraborty, A. K. (2018). Solution of short-term hydrothermal scheduling using sine cosine algorithm. Soft Computing, 22(19), 6409–6427.

    Article  Google Scholar 

  67. Gupta, S., & Deep, K. (2019). Improved sine cosine algorithm with crossover scheme for global optimization. Knowledge-Based Systems, 165, 374–406.

    Article  Google Scholar 

  68. Abd Elaziz, M., Oliva, D., & Xiong, S. (2017). An improved opposition-based sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500.

    Article  Google Scholar 

  69. Guo, W., Wang, Y., Zhao, F., & Dai, F. (2019). Riesz fractional derivative elite-guided sine cosine algorithm. Applied Soft Computing, 81, 105481.

    Article  Google Scholar 

  70. Nenavath, H., & Jatoth, R. K. (2018). Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Applied Soft Computing, 62, 1019–1043.

    Article  Google Scholar 

  71. Chegini, S. N., Bagheri, A., & Najafi, F. (2018). PSOSCALF: A new hybrid PSO based on sine cosine algorithm and levy flight for solving optimization problems. Applied Soft Computing, 73, 697–726.

    Article  Google Scholar 

  72. Xian, H., Yang, C., Wang, H., & Yang, X. (2021). A modified sine cosine algorithm with teacher supervision learning for global optimization. IEEE Access, 9, 17744–17766.

    Article  Google Scholar 

  73. Li, C., Luo, Z., Song, Z., Yang, F., Fan, J., & Liu, P. X. (2019). An enhanced brain storm sine cosine algorithm for global optimization problems. IEEE Access, 7, 28211–28229.

    Article  Google Scholar 

  74. Liang, J., Qu, B., Suganthan, P., & Hernández-Díaz, A. G. (2013). Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. In Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical report (Vol. 201212, No. 34, pp. 281–295).

  75. Nguyen, T. T., Pan, J. S., & Dao, T. K. (2019). A compact bat algorithm for unequal clustering in wireless sensor networks. Applied Sciences, 9(10), 1973.

    Article  Google Scholar 

  76. Dao, T. K., Chu, S. C., Shieh, C. S., & Horng, M. F. (2014). Compact artificial bee colony (pp. 96–105).

  77. Rochat, Y., & Taillard, É. D. (1995). Probabilistic diversification and intensification in local search for vehicle routing. Journal of Heuristics, 1(1), 147–167.

    Article  Google Scholar 

  78. Homberger, J. (2000). Verteilt-parallele metaheuristiken zur tourenplanung. Deutscher Universitätsverlag.

  79. Li, H., & Lim, A. (2003). Local search with annealing-like restarts to solve the VRPTW. European Journal of Operational Research, 150(1), 115–127.

    Article  Google Scholar 

  80. Taillard, É., Badeau, P., Gendreau, M., Guertin, F., & Potvin, J. Y. (1997). A Tabu search heuristic for the vehicle routing problem with soft time windows. Transportation Science, 31(2), 170–186.

    Article  Google Scholar 

  81. Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing problems. In International conference on principles and practice of constraint programming (pp. 417–431). Springer.

  82. Wang, J., Gao, Y., Liu, W., Sangaiah, A. K., & Kim, H. J. (2019). An improved routing schema with special clustering using PSO algorithm for heterogeneous wireless sensor network. Sensors, 19(3), 671.

    Article  Google Scholar 

  83. Wang, J., Xu, H., Teo, K. L., Sun, J., & Ye, J. (2020). Mixed-integer minimax dynamic optimization for structure identification of glycerol metabolic network. Applied Mathematical Modelling, 82, 503–520.

  84. Sun, G. B., Chiu, Y. J., Cao, J. H., & Wang, Y. (2019). A dynamic programming based fuzzy logic energy management strategy for series–parallel hybrid electric vehicles. Journal of Information Hiding and Multimedia Signal Processing, 10(2), 422–433.

    Google Scholar 

Download references

Funding

None. No fundings to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Chuan Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Comparison of test results of cSCA_n, cSCA and oSCA

See Tables 2, 3, and 4.

Table 4 Comparison of 50D test results of cSCA_n, cSCA and oSCA

Appendix B: Comparsion of test results of compact algorithms

See Tables 5 and 6.

Table 5 Comparison of other compact algorithms on 30D
Table 6 Comparison of other compact algorithms on 50D

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, JS., Yang, Qy., Chu, SC. et al. Compact Sine Cosine Algorithm applied in vehicle routing problem with time window. Telecommun Syst 78, 609–628 (2021). https://doi.org/10.1007/s11235-021-00833-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00833-7

Keywords

Navigation