Skip to main content
Log in

Personalised viewing-time prediction in museums

  • Original Paper
  • Published:
User Modeling and User-Adapted Interaction Aims and scope Submit manuscript

Abstract

People are often overwhelmed by the large amount of information provided in museum spaces, which makes it difficult for them to select exhibits of potential interest. As a first step in recommending exhibits where a visitor may wish to spend some time, this article investigates predictive user models for personalised prediction of museum visitors’ viewing times at exhibits. We consider two content-based models and a nearest-neighbour collaborative filter, and develop a collaborative model based on the theory of spatial processes which relies on a notion of distance between exhibits. We discuss models of exhibit distance derived from viewing-time similarity, semantic similarity and walking distance. The results from our evaluation with a real-world dataset of visitor pathways collected at Melbourne Museum (Melbourne, Australia) suggest that utilising walking and semantic distances between exhibits enables more accurate predictions of a visitor’s viewing times of unseen exhibits than using distances derived from observed exhibit viewing times. Our results also show that all models outperform a non-personalised baseline, that content-based viewing time prediction yields better results than nearest-neighbour collaborative prediction, and that our collaborative model based on spatial processes attains the highest predictive accuracy overall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Memory-based and model-based methods have traditionally only been distinguished for collaborative approaches, but this classification may also be adopted for content-based approaches. In this sense, CBF and NLMSF are memory-based and model-based respectively.

  2. There are other factors that influence viewing time, such as hunger and length of stay in the museum (Sects. 1 and 4.1). However, for annotation purposes, using average visitor viewing time is a reasonable approach to take exhibit-area complexity into account.

  3. These thresholds, and those for the Populated model, were empirically determined.

  4. We did not annotate word senses manually, as this process is more cumbersome and more subjective than employing synsets. However, the incorporation of additional synsets is an interesting option that may be worth pursuing in the future, in particular in light of the promising results obtained with the Populated model (Sect. 5.2.2).

  5. It is not feasible to model situation- and user-specific factors, e.g., hunger. However, an interesting avenue for future research could involve refining our model to adjust viewing time on the basis of length of stay at the museum or viewing order of exhibit areas.

  6. The Bayesian information criterion (BIC), which is closely related to the Akaike information criterion (AIC) (Akaike 1974), is a criterion for selecting a model from a finite set of models. It does so by quantifying the ability of each parameterised model to predict the data, while penalising the complexity of the model (measured by the number of model parameters).

  7. Shrinkage to the mean is also applied for the collaborative viewing-time model in Sect. 4.3 and our second content-based model in Sect. 4.4, but is not required for our model based on Gaussian spatial processes in Sect. 4.5 due to the structure of the model.

  8. We also experimented with Spearman’s rank correlation coefficient, which performed similarly to Pearson’s correlation coefficient. We did not employ cosine similarity as done for CBF, because Pearson correlation tends to outperform cosine similarity in collaborative filtering (Breese et al. 1998).

  9. This functional specification of the correlation structure between exhibit-area pairs is crucial for the direct, interpretable application of parametric Gaussian (spatial) processes (with the ensuing low variance in parameter estimates), compared to more complex non-parametric Gaussian process approaches, e.g., (Schwaighofer et al. 2005).

  10. Slice Gibbs sampling is a Markov chain Monte Carlo algorithm for drawing random samples from a probability distribution. The method is based on the observation that one can sample a random variable by uniformly drawing from the region under the graph of its density function.

  11. This visitor-specific \(\log \)-viewing-time normalisation for calculating I2I differs from the normalisation required within our models based on normalised \(\log \) viewing time (Sects. 4.2 to 4.4), which is specific to each exhibit area (Eq. 1, Sect. 4.1). Although SPM may use I2I to measure the distance between exhibit areas, it does not otherwise require \(\log \)-viewing-time normalisations specific to an exhibit area or a visitor to generate viewing-time predictions. We also tested a variant of the I2I measure without visitor-specific normalisation. However, this variant yielded inferior results.

  12. Credible intervals (in Bayesian statistics) are analogous to confidence intervals in frequentist statistics.

    Table 7 SPM – Posterior mean parameter estimates for \(\tau ^2\), \(\phi \) and \(\nu \)
  13. Recall that model-based NLMSF outperforms memory-based CBF for the PV experiment, but CBF is slightly better than NLMSF for the IE experiment. As indicated in Sect. 5.2.2, we give more weight to the stronger results for the PV experiment, as the PV experiment evaluates the models’ performance with the progression of a visit, which is more realistic for a museum setting than the evaluation based on performance for individual exhibit areas.

References

  • Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974). doi: 10.1109/TAC.1974.1100705

    Google Scholar 

  • Albrecht, D.W., Zukerman, I.: Special issue on statistical and probabilistic methods for user modeling. User Mode. User-Adap. Inter. 17(1–2), (2007). http://www.springerlink.com/content/r75370576154/

  • Anderson, U.S., Kelling, A.S., Pressley-Keough, R., Bloomsmith, M.A., Maple, T.L.: Enhancing the zoo visitor’s experience by public animal training and oral interpretation at an otter exhibit. Environ. Behav. 35, 826–841 (2003). doi:10.1177/0013916503254746

    Google Scholar 

  • Aroyo, L., Stash, N., Wang, Y., Gorgels, P., Rutledge, L.: CHIP demonstrator: Semantics-driven recommendations and museum tour generation. In: Proc. of the Sixth Intl. Conf. on the Semantic Web (ISWC-07), pp. 879–886 (2007). http://www.springerlink.com/content/l84n130203n526k1/

  • Baldwin, T., Ye, P., Bohnert, F., Zukerman, I.: In situ text summarisation for museum visitors. In: Proc. of the 25th Pacific Asia Conf. on Language, Information and Computation (PACLIC-11), Singapore, pp. 372–381 (2011). http://www.aclweb.org/anthology-new/Y/Y11/Y11-1039.pdf

  • Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall, London (2004)

    MATH  Google Scholar 

  • Baus, J., Cheverst, K., Kray, C.: A survey of map-based mobile guides–theories, methods and implementations. In: Meng, L., Zipf. A., Reichenbacher, T. (eds.), Map-based Mobile Services, chap. 13, pp. 193–209. Springer, Heidelberg (2005). http://www.springerlink.com/content/mu516h0611126438/

  • Bell, R.M., Koren, Y., Volinsky, C.: Chasing \({\$}\)1,000,000: How we won the Netflix progress prize. ASA Stat. Comput. Graph. Newsl. 18(2), 4–12 (2007)

  • Berkovsky, S., Baldwin, T., Zukerman, I.: Aspect-based personalized text summarization. In: Proc. of the Fifth Intl. Conf. on Adaptive Hypermedia and Adaptive Web-Based Systems (AH-08), pp. 267–270 (2008). http://www.springerlink.com/content/u6q51q170n681155/

  • Bohnert, F.: Non-Intrusive User Modelling and Behaviour Prediction in Museums. PhD thesis, Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia (2010). http://arrow.monash.edu.au/hdl/1959.1/475250

  • Bohnert, F., Zukerman, I.: A computer-supported methodology for recording and visualising visitor behaviour in museums. In: Adjunct Proc. of the 17th Intl. Conf. on User Modeling, Adaptation, and Personalization (UMAP-09), Trento, Italy, pp. 115–120 (2009a). http://umap09.fbk.eu/sites/umap09.fbk.eu/files/Bohnert-demo_long.pdf

  • Bohnert, F., Zukerman, I.: Non-intrusive personalisation of the museum experience. In: Proc. of the 17th Intl. Conf. on User Modeling, Adaptation, and Personalization (UMAP-09), Trento, Italy, pp. 197–209 (2009b). http://www.springerlink.com/content/34v25t0111549n13/

  • Bohnert, F., Zukerman, I.: Using keyword-based approaches to adaptively predict interest in museum exhibits. In: Proc. of the 22nd Australasian Joint Conf. on Artificial Intelligence (AI-09), Melbourne, Australia, pp. 656–665 (2009c). http://www.springerlink.com/content/31158k33p66831x5/

  • Bohnert, F., Zukerman, I., Berkovsky, S., Baldwin, T., Sonenberg, L.: Using interest and transition models to predict visitor locations in museums. AI Commun. 21(2–3), 195–202 (2008) http://iospress.metapress.com/index/J3151033166G2610.pdf

  • Bohnert, F., Schmidt, D.F., Zukerman, I.: Spatial processes for recommender systems. In: Proc. of the 21st Intl. Joint Conf. on Artificial Intelligence (IJCAI-09), Pasadena, CA, USA, pp. 2022–2027 (2009). http://ijcai.org/papers09/Papers/IJCAI09-333.pdf

  • Bohnert, F., Zukerman, I., Albrecht, D.W.: Realistic simulation of museum visitors’ movements as a tool for assessing sensor-based user models. In: Proc. of the 20th Intl. Conf. on User Modeling, Adaptation, and Personalization (UMAP-12), Montreal, Canada, pp. 14–25 (2012a). http://link.springer.com/chapter/10.10072

  • Bohnert, F., Zukerman, I., Laures, J.: GECKOmmender: Personalised theme and tour recommendations for museums. In: Proc. of the 20th Intl. Conf. on User Modeling, Adaptation, and Personalization (UMAP-12), Montreal, Canada, pp. 26–37 (2012b). http://link.springer.com/chapter/10.10073

  • Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proc. of the 14th Intl. Conf. on Uncertainty in, Artificial Intelligence (UAI-98), pp. 42–52 (1998)

  • Bruns, E., Bimber, O.: Localization and classification through adaptive pathway analysis. IEEE Pervas. Comput. 28(2), 74–81 (2012). doi:10.1109/MPRV.2010.68

    Google Scholar 

  • Bruns, E., Brombach, B., Bimber, O.: Mobile phone enabled museum guidance with adaptive classification. IEEE Comput. Graph. Appl. 28(4), 98–102 (2008). doi:10.1109/MCG.2008.77

    Google Scholar 

  • Burke, R.D.: Knowledge-based recommender systems. In: Kent, A. (ed.), Encyclopedia of Library and Information Science, vol. 69, Marcel Dekker, Inc., New York, pp. 180–201 (2000)

  • Burke, R.D.: Hybrid recommender systems: Survey and experiments. User Mode. User-Adap. Inter. 12(4), 331–370 (2002). http://www.springerlink.com/content/n881136032u8k111/

  • Burke, R.D.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.), The Adaptive Web-Methods and Strategies of Web Personalization. chap. 12, pp. 377–408. Springer, Heidelberg (2007). http://www.springerlink.com/content/9157265121203453/

  • Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing a context-aware electronic tourist guide: Some issues and experiences. In: Proc. of the 2000 SIGCHI Conf. on Human Factors in Computing Systems (CHI-00), pp. 17–24, ACM Press, New York (2000). doi:10.1145/332040.332047

  • Cheverst, K., Mitchell, K., Davies, N.: The role of adaptive hypermedia in a context-aware tourist GUIDE. Commun. ACM 45(5), 47–51 (2002). doi:10.1145/506218.506244

  • Conati, C., Gertner, A., Vanlehn, K.: Using Bayesian networks to manage uncertainty in student modeling. User Mode. User-Adap. Inter. 12(4), 371–417 (2002). http://www.springerlink.com/content/uh10863178301011/

  • Davey, G.: What is museum fatigue. Visit. Stud. Today 8(3), 17–21 (2005)

    Google Scholar 

  • Davison, B., Hirsh, H.: Predicting sequences of user actions. In: Notes of the AAAI/ICML 1998 Workshop on Predicting the Future: AI Approaches to Time-Series Analysis, held in conjunction with the 15th Ntl. Conf. on Artificial Intelligence (AAAI-98) and the 15th Intl. Conf. on Machine Learning (ICML-98) (1998)

  • Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst. 22(1), 143–177 (2004). doi:10.1145/963770.963776

    Google Scholar 

  • Diamond, J.: Practical Evaluation Guide-Tools for Museums and Other Informal Educational Settings. AltaMira Press, New York (1999)

    Google Scholar 

  • Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Falk, J.H., Koran, J.J., Dierking, L.D., Dreblow, L.: Predicting visitor behavior. Curator 28(4), 249–257 (1985). doi:10.1111/j.2151-6952.1985.tb01753.x

    Google Scholar 

  • Fausett, L.: Fundamentals of Neural Networks: Architecture, Algorithms, and Applications. Prentice Hall, London (1993)

    Google Scholar 

  • Fellbaum, C.: WordNet: An Electronic Lexical Database. Bradford Books, Cambridge (1998)

    MATH  Google Scholar 

  • Filippini-Fantoni, S.: Personalization through IT in museums. Does it really work?–The case of the Marble Museum website. In: Proc. of the Seventh Intl. Cultural Heritage Informatics Meeting (ICHIM-03) (2003). http://www.archimuse.com/publishing/ichim03/070C.pdf

  • Fink, J., Kobsa, A.: User modeling for personalized city tours. Artif. Intell. Rev. 18(1), 33–74 (2002). http://www.springerlink.com/content/9apul9xhjbk1xuqx/

  • Fleck, M., Frid, M., Kindberg, T., O’Brien-Strain, E., Rajani, R., Spasojevic, M.: From informing to remembering: Ubiquitous systems in interactive museums. IEEE Pervas. Comput. 1(2), 13–21 (2002). doi:10.1109/MPRV.2002.1012333

    Google Scholar 

  • Foltz, P.W., Dumais, S.T.: Personalized information delivery: An analysis of information filtering methods. Commun. ACM 35(12), 51–60 (1992). doi:10.1145/138859.138866

  • Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992). doi:10.1145/138859.138867

    Google Scholar 

  • Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time collaborative filtering algorithm. Inf. Retriev. 4(2), 133–151 (2001). http://www.springerlink.com/content/m5458kv8lj602646/

  • Hatala, M., Wakkary, R.: Ontology-based user modeling in an augmented audio reality system for museums. User Mode. User-Adap. Inter. 15(3–4), 339–380 (2005). http://www.springerlink.com/content/pw31357v67344061/

  • Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, London (1998)

    Google Scholar 

  • Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.T.: An algorithmic framework for performing collaborative filtering. In: Proc. of the 22nd Annual Intl. ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR-99), pp. 230–237. ACM Press, New York, NY, USA (1999). doi:10.1145/312624.312682

  • Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004). doi:10.1145/963770.963772

    Google Scholar 

  • Hofmann, T.: Collaborative filtering via Gaussian probabilistic latent semantic analysis. In: Proc. of the 26th Annual Intl. ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR-03), pp. 259–266. ACM Press, New York, NY, USA (2003). doi:10.1145/860435.860483

  • Horvitz, E.J., Breese, J.S., Heckerman, D., Hovel, D., Rommelse, K.: The Lumière project: Bayesian user modeling for inferring the goals and needs of software users. In: Proc. of the 14th Intl. Conf. on Uncertainty in Artificial Intelligence (UAI-98), Madison, WI, USA, pp. 256–265 (1998). http://research.microsoft.com/en-us/um/people/horvitz/lumiere.HTM

  • James, W., Stein, C.M.: Estimation with quadratic loss. In: Proc. of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 361–379 (1961)

  • Jennings, A., Higuchi, H.: A user model neural network for a personal news service. User Mode. User-Adap. Inter. 3(1), 1–25 (1993). http://www.springerlink.com/content/h47x264x19086725/

  • Joachims, T., Freitag, D., Mitchell, T.: WebWatcher: A tour guide for the world wide web. In: Proc. of the 15th Intl. Joint Conf. on, Artificial Intelligence (IJCAI-97), pp. 770–775 (1997).

  • Joest, M., Stille, W.: A user-aware tour proposal framework using a hybrid optimization approach. In: Proc. of the 10th ACM Intl. Symposium on Advances in Geographic Information Systems (GIS-02), pp. 81–87. ACM Press, New York, NY, USA (2002). doi:10.1145/585147.585165

  • Kivinen, J., Warmuth, M.K.: Exponentiated gradient versus gradient descent for linear predictors. Inf. Comput. 132(1), 1–63 (1997). doi:10.1006/inco.1996.2612

    Google Scholar 

  • Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.T.: GroupLens: Applying collaborative filtering to usenet news. Commun. ACM 40(3), 77–87 (1997). doi:10.1145/245108.245126

    Google Scholar 

  • Koren, Y.: Factorization meets the neighborhood: A multifaceted collaborative filtering model. In: Proceeding of the 14th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (KDD-08), pp. 426–434. ACM Press, New York, NY, USA (2008). doi:10.1145/1401890.1401944

  • Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Comput. 42(8), 30–37 (2009). doi:10.1109/MC.2009.263

    Google Scholar 

  • Kray, C., Baus, J.: A survey of mobile guides. In: Proc. of the Third Workshop on HCI in Mobile Guides, held in conjunction with the Fifth Intl. Symposium on Human Computer Interaction with Mobile Devices and Services (MobileHCI-03). (2003)

  • Krüger, A., Baus, J., Heckmann, D., Kruppa, M., Wasinger, R.: Adaptive mobile guides. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.), The Adaptive Web-Methods and Strategies of Web Personalization, chap. 17, pp. 521–549. Springer, Heidelberg (2007). http://www.springerlink.com/content/77521q4250650p63/

  • Krulwich, B.: Lifestyle Finder: Intelligent user profiling using large-scale demographic data. Artif. Intell. Mag. 18(2), 37–45 (1997). http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1292

  • Kubadji: The Kubadji Project. (2007). http://www.kubadji.org/

  • Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80, (2003). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1167344

    Google Scholar 

  • Maes, P.: Agents that reduce work and information overload. Commun. ACM 37(7), 30–40 (1994). doi:10.1145/176789.176792

  • Malaka, R., Zipf, A.: Deep Map - Challenging IT research in the framework of a tourist information system. In: Proc. of the Seventh Intl. Conf. on Information and Communication Technologies in Tourism (ENTER-00), pp. 15–27. Springer, Vienna (2000)

  • Malone, T.W., Grant, K.R., Turbak, F.A., Brobst, S.A., Cohen, M.D.: Intelligent information-sharing systems. Commun. ACM 30(5), 390–402 (1987). doi:10.1145/22899.22903

    Google Scholar 

  • Morita, M., Shinoda, Y.: Information filtering based on user behavior analysis and best match text retrieval. In: Proc. of the 17th Annual Intl. ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR-94), pp. 272–281. Springer, New York, Inc. (1994). http://dl.acm.org/citation.cfm?id=188490.188583

  • Moscardo, G: Mindful visitors: Heritage and tourism. Ann. Tour. Res. 23(2), 376–397 (1996). doi:10.1016/0160-7383(95)00068-2

    Google Scholar 

  • MovieLens: MovieLens. (1997). http://www.movielens.org/

  • Neal, R.M.: Slice sampling. Ann. Stat. 31(3), 705–767 (2003). http://projecteuclid.org/euclid.aos/1056562461

  • Netflix: Netflix. (1997). http://www.netflix.com/

  • Oard, D.W.: The state of the art in text filtering. User Mode. User-Adap. Inter. 7(3), 141–178 (1997). http://www.springerlink.com/content/k040468m41264111/

  • Oppermann, R., Specht, M.: A context-sensitive nomadic information system as an exhibition guide. In: Proc. of the Second Intl. Symposium on Handheld and Ubiquitous Computing (HUC-00), pp. 127–142. Springer, London (2000). http://www.springerlink.com/content/9cajnndhlefubqe6/

  • Parsons, J., Ralph, P., Gallager, K.: Using viewing time to infer user preference in recommender systems. In: Proc. of the AAAI 2004 Workshop on Semantic Web Personalization (SWP-04), held in conjunction with the 19th Ntl. Conf. on Artificial Intelligence (AAAI-04), pp. 52–64 (2004). http://maya.cs.depaul.edu/mobasher/swp04/accepted/parsons.pdf

  • Pazzani, M., Billsus, D.: Learning and revising user profiles: The identification of interesting web sites. Mach. Learn. 27(3), 313–331 (1997). doi:10.1023/A:1007369909943

  • Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artif. Intell. Rev. 13(5–6), 393–408 (1999). doi:10.1023/A:1006544522159

  • Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.), The Adaptive Web-Methods and Strategies of Web Personalization, chap. 10, pp. 325–341. Springer, Berlin (2007). http://www.springerlink.com/content/qq35wt68l6774261/

  • Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 2nd edn. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  • Petrelli, D., Not, E.: User-centred design of flexible hypermedia for a mobile guide: Reflections on the HyperAudio experience. User Mode. User-Adap. Inter. 15(3–4), 303–338 (2005). http://www.springerlink.com/content/7j04307m331t2203/

  • Pospischil, G., Umlauft, M., Michlmayr, E.: Designing LoL\(@\), a mobile tourist guide for UMTS. In: Proc. of the Forth Intl. Symposium on Mobile Human-Computer Interaction (MobileHCI-02), pp. 140–154. Springer, London (2002). http://www.springerlink.com/content/1w6nqxk9xa4uqean/

  • Proctor, N., Tellis, C.: The state of the art in museum handhelds in 2003. In: Proc. of the 12th Intl. Conf. on Museums and the Web (MW-03), (2003). http://www.archimuse.com/mw2003/papers/proctor/proctor.html

  • Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997). doi:10.1145/245108.245121

  • Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.T.: GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the 1994 ACM Conf. on Computer Supported Cooperative Work (CSCW-94), pp. 175–186. ACM Press, New York, NY, USA (1994). doi:10.1145/192844.192905

  • Salton, G., McGill, M.J.: An Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)

  • Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.T.: Application of dimensionality reduction in recommender system–a case study. In: Proc. of the 2000 Workshop on Web Mining for E-Commerce, in conjunction with the Sixth ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (KDD-00) (2000). http://ai.stanford.edu/ronnyk/WEBKDD2000/papers/sarwar.pdf

  • Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.T.: Item-based collaborative filtering recommendation algorithms. In: Proc. of the 10th Intl. Conf. on the World Wide Web (WWW-01), pp. 285–295 (2001). doi:10.1145/371920.372071

  • Schafer, B.J., Frankowski, D., Herlocker, J.L., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.), The Adaptive Web-Methods and Strategies of Web Personalization, chap. 9, pp. 291–324. Springer, Berlin (2007). http://www.springerlink.com/content/t87386742n752843/

  • Schwaighofer, A., Tresp, V., Yu, K.: Learning Gaussian process kernels via hierarchical Bayes. In: Advances in Neural Information Processing Systems 17 (NIPS-04), pp. 1209–1216. MIT Press, Cambridge, MA, USA (2005). http://books.nips.cc/papers/files/nips17/NIPS2004_0763.pdf

  • Schwarz, G.E.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MATH  Google Scholar 

  • Schwinger, W., Grun, C., Proll, B., Retschitzegger, W., Schauerhuber, A.: Context-awareness in mobile tourism guides–A comprehensive survey. In: Khalil, I. (ed.), Handbook of Research on Mobile Multimedia, 2nd edn, chap. 37. Information Science Reference, pp. 534–552 (2008)

  • Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating “word of mouth”. In: Proc. of the 1995 SIGCHI Conf. on Human Factors in Computing Systems (CHI-95), pp. 210–217. ACM Press, New York, NY, USA (1995). doi:10.1145/223904.223931

  • Sparacino, F.: The Museum Wearable–Real-time sensor-driven understanding of visitors’ interests for personalized visually-augmented museum experiences. In: Proc. of the 11th Intl. Conf. on Museums and the Web (MW-02) (2002). http://www.archimuse.com/mw2002/papers/sparacino/sparacino.html

  • Staab, S., Werthner, H., Ricci, F., Zipf, A., Gretzel, U., Fesenmaier, D.R., Paris, C., Knoblock, C.: Intelligent systems for tourism. IEEE Intell. Syst. 17(6), 53–64 (2002). doi:10.1109/MIS.2002.1134362

    Google Scholar 

  • Stock, O., Zancanaro, M. (eds): PEACH–Intelligent Interfaces for Museum Visits. Springer, Heidelberg (2007). http://www.springerlink.com/content/mvq37g/

  • Stock, O., Zancanaro, M., Busetta, P., Callaway, C., Krüger, A., Kruppa, M., Kuflik, T., Not, E., Rocchi, C.: Adaptive, intelligent presentation of information for the museum visitor in PEACH. User Mode. User-Adap. Inter. 18(3), 257–304 (2007). doi:10.1007/s11257-007-9029-6

  • ten Hagen, K., Kramer, R., Hermkes, M., Schumann, B., Müller, P.: Semantic matching and heuristic search for a dynamic tour guide. In: Proc. of the 12th Intl. Conf. on Information and Communication Technologies in Tourism (ENTER-05), pp. 149–159. Springer, Vienna (2005a). http://www.springerlink.com/content/pn5t20070v520tr6/

  • ten Hagen, K., Modsching, M., Kramer, R.: A location aware mobile tourist guide selecting and interpreting sights and services by context matching. In: Proc. of the Second Annual Intl. Conf. on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous-05), pp. 293–304. IEEE Computer Society, Washington, DC, USA (2005b). doi:10.1109/MOBIQUITOUS.2005.4

  • Ungar, L.H., Foster, D.P.: Clustering methods for collaborative filtering. In: Proc. of the AAAI 1998 Workshop on Recommender Systems, in conjunction with the 15th Ntl. Conf. on Artificial Intelligence (AAAI-98), AAAI Press, Menlo Park, CA, USA (1998)

  • Véron, E., Levasseur, M.: Ethnographie de l’Exposition. Bibliothèque Publique d’Information. Centre Georges Pompidou, Paris, France (1983)

    Google Scholar 

  • Wakkary, R., Hatala, M.: Situated play in a tangible interface and adaptive audio museum guide. Pers. Ubiquitous Comput. 11(3), 171–191 (2007). doi:10.1007/s00779-006-0101-8

  • Wang, Y., Stash, N., Aroyo, L., Gorgels, P., Rutledge, L., Schreiber, G.: Recommendations based on semantically enriched museum collections. Web Seman. Sci. Serv. Agents World Wide Web 6(4), 283–290 (2008). http://linkinghub.elsevier.com/retrieve/pii/S1570826808000681

  • Wang, Y., Aroyo, L., Stash, N., Sambeek, R., Schuurmans, Y., Schreiber, G., Gorgels, P.: Cultivating personalized museum tours online and on-site. Interdiscip. Sci. Rev. 34(2), 141–156 (2009). 10.1179/174327909X441072

    Google Scholar 

  • Widrow, B., Hoff, M.E.: Adaptive switching circuits. In: IRE WESCON Convention. Record 4, 96–104 (1960)

    Google Scholar 

  • Woodruff, A., Aoki, P.M., Hurst, A., Szymanski, M.H.: Electronic guidebooks and visitor attention. In: Proc. of the Sixth Intl. Cultural Heritage Informatics Meeting (ICHIM-01), pp. 437–454 (2001). http://www.archimuse.com/publishing/ichim01_vol1/woodruff.pdf

  • Zimmermann, A., Lorenz, A., Specht, M.: Interaction 18(5), 389–416 (2008). http://www.springerlink.com/content/83810248621178nv/

    Google Scholar 

  • Zukerman, I., Albrecht, D.W.: Predictive statistical models for user modeling. User Mode. User-Adap. Inter. 11(1–2), 5–18 (2001). http://www.springerlink.com/content/x883127200727k8x/

Download references

Acknowledgments

This research was supported in part by grant DP0770931 from the Australian Research Council, and a Postgraduate Publication Award from the Centre for Research in Intelligent Systems (CRIS) at Monash University. The authors thank Liz Sonenberg, Timothy Baldwin, Shlomo Berkovsky and Daniel F. Schmidt for their involvement at various stages of this research; Carolyn Meehan and her team from Museum Victoria for fruitful discussions and their support; David W. Albrecht for his help with statistical matters; David Abramson, Jeff Tan and Blair Bethwaite for their assistance with using the computer clusters; and Alfred Kobsa and the three anonymous reviewers for their thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Bohnert.

Additional information

This article integrates and extends research described in (Bohnert and Zukerman 2009a,b,c) and (Bohnert et al. 2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohnert, F., Zukerman, I. Personalised viewing-time prediction in museums. User Model User-Adap Inter 24, 263–314 (2014). https://doi.org/10.1007/s11257-013-9141-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11257-013-9141-8

Keywords

Navigation