Skip to main content
Log in

Multivariate Statistical Models for Image Denoising in the Wavelet Domain

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We model wavelet coefficients of natural images in a neighborhood using the multivariate Elliptically Contoured Distribution Family (ECDF) and discuss its application to the image denoising problem. A desirable property of the ECDF is that a multivariate Elliptically Contoured Distribution (ECD) can be deduced directly from its lower dimension marginal distribution. Using the property, we extend a bivariate model that has been used to successfully model the 2-D joint probability distribution of a two dimension random vector—a wavelet coefficient and its parent—to multivariate cases. Though our method only provides a simple and rough characterization of the full probability distribution of wavelet coefficients in a neighborhood, we find that the resulting denoising algorithm based on the extended multivariate models is computably tractable and produces state-of-the-art restoration results. In addition, we discuss the equivalence relation between our denoising algorithm and several other state-of-the-art denoising algorithms. Our work provides a unified mathematic interpretation of a type of statistical denoising algorithms. We also analyze the limitations and advantages of algorithms of this type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, T.W. and Fang, K.T. 1987. On the theory of multivariate elliptically contoured distributions. Sankhya, 49 (Series A):305–315.

    Google Scholar 

  • Anderson, T.W. and Fang, K.T. 1992. Theory and applications elliptically contoured and related distributions. In The Development of Statistics: Recent Contributions from China, Longman, London, pp. 41–62.

    Google Scholar 

  • Andrews, D. and Mallows, C. 1974. Scale mixtures of normal distributions. J. R. Statist. Soc, 36:99.

    MATH  MathSciNet  Google Scholar 

  • Awate, S.P. and Whitaker, R.T. 2005. Higher-order image statistics for unsupervised, information-theoretic, adaptive, image filtering. In Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition. Available: http://www.cs.utah.edu/research/techreports/

  • Brehm, H. and Stammler, W. 1987. Description and generation of spherically invariant speech-model signals. Signal Processing, 9:119–141.

    Article  Google Scholar 

  • Candès, E.J. 1999. Harmonic analysis of neural netwoks. Appl. Comput. Harmon. Anal., 6:197–218.

    Article  MATH  MathSciNet  Google Scholar 

  • Candès, E.J. and Donoho, D.L. 1999. Curvelets—A surprisingly effective nonadaptive representation for objects with edges. In Curve and Surface Fitting: Saint-Malo 1999, A. Cohen, C. Rabut, and L.L. Schumaker (eds.). Van-derbilt Univ. Press, Nashville, TN.

    Google Scholar 

  • Chang, S.G., Yu, B., and Vetterli, M. 1998. Spatially adaptive wavelet thresh-olding with context modeling for image denoising. In Proc. 5th IEEE Int. Conf. Image Processing, Chicago.

  • Crouse, M.S., Nowak, R.D., and Baraniuk, R.C. 1998. Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans. Signal Processing, 46:886–902.

    Article  MathSciNet  Google Scholar 

  • Do, M.N. and Vetterli, M. 2003. The finite ridgelet transform for image representation. IEEE Trans. Image Processing, 12:16–28.

    Article  MathSciNet  Google Scholar 

  • Do, M.N. and Vetterli, M. 2005. The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image Processing, 14:2091–2106.

    Article  MathSciNet  Google Scholar 

  • Donoho, D.L. 2000. Orthonormal ridgelet and linear singularities. SIAM J. Math Anal., 31:1062–1099.

    Article  MATH  MathSciNet  Google Scholar 

  • Fang, K.T. and Zhang, Y.T. 1990. Generalized Multivariate Analysis. Science Press and Springer-Verlag, Beijing and Berlin.

    MATH  Google Scholar 

  • Field, D. 1987. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Amer. A, 4(12):2379–2394.

    Article  Google Scholar 

  • Figueiredo, M. and Nowak., R. 2001. Wavelet-based image estimation: An empirical Bayes approach using Jeffrey’s noninformative prior. IEEE Trans. Image Processing, 10:1322–1331.

    Article  MATH  MathSciNet  Google Scholar 

  • Gehler, P.V. and Welling, M. 2005. Product of Edgeperts. Advances in Neural Information Processing System, 18, 8, MIT Press, Cambridge, MA.

  • Huang, J. 2000. Statistics of natural images and models. Ph.D. Thesis, Division of Appled Mathematics, Brown University, RI.

  • Lee, A.B., Pedersen, K.S., and Mumford, D. 2003. The nonlinear statistics of high-contrast patches in natural Images. International Journal of Computer Vision, 54:83–103.

    Article  MATH  Google Scholar 

  • Liu, J. and Moulin, P. 2001. Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients. IEEE Trans. Image Processing, 10:1647–1658.

    Google Scholar 

  • Mallat, S.G. 1989. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Pattern Anal. Machine Intell., 11:674–693.

    Article  MATH  Google Scholar 

  • Mihcak, M.K., Kozintsev, I., Ramchandran, K., and Moulin, P. 1999. Low complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Lett., 6:300–303.

    Article  Google Scholar 

  • Moulin, P. and Liu, J. 1999. Analysis of multiresolution image denoising schemes using a generalized Gaussian and complexity priors. IEEE Trans. Inform. Theory, 45:909–919.

    Article  MATH  MathSciNet  Google Scholar 

  • Mumford, D. 2005. Empirical statistics and stochastic models for visual signals. In New Directions in Statistical Signal Processing: From Systems to Brain, S. Haykin, J.C. Principe, T.J. Sejnowski, J. McWhirter (eds.). MIT Press, Cambridge, MA.

    Google Scholar 

  • Pižurica, A., Philips, W., Lemahieu, I., and Acheroy, M. 2002. A joint inter-and intrascale statistical model for Bayesian wavelet based image de-noising. IEEE Trans. Image Processing, 11:545–557.

    Article  Google Scholar 

  • Po, D.D.-Y. and Do, M.N. 2006. Directional multiscale modeling of images using the contourlet transform. IEEE Trans. Image Processing, 15:1610–1620.

    Article  MathSciNet  Google Scholar 

  • Portilla, J., Strela, V., Wainwright, M.J., and Simoncelli, E.P. 2003. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Processing, 12:1338–1351.

    Article  MathSciNet  Google Scholar 

  • Rangaswamy, M., Weiner, D., and Ozturk, A. 1993. Non-Gaussian random vector identification using spherically invariant random processes. IEEE Trans. Aerosp. Electron. Syst., 29:111–123.

    Article  Google Scholar 

  • Schoenberg, I.J. 1938. Metric spaces and completely monotone functions. Ann. Math., 39:811–841.

    Article  MathSciNet  Google Scholar 

  • Sendur, L. and Selesnick, I.W. 2002a. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. Signal Processing, 50:2744–2756.

    Article  Google Scholar 

  • Sendur, L. and Selesnick, I.W. 2002b. Bivariate shrinkage with local variance estimation. IEEE Signal Processing Lett., 9:438–441.

    Article  Google Scholar 

  • Shapiro, J. 1993. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Sig. Proc., 41(12):3445–3462.

    Article  MATH  Google Scholar 

  • Simoncelli. E.P. 1997. Statistical models for images: Compression, restoration and synthesis. In Proc. 31st Asilomar Conf. on Signals, Systems and Computers. Available: http://www.cns.nyu.edu/∼eero/publications.html

  • Simoncelli, E.P. and Adelson, E.H. 1996. Noise removal via Bayesian wavelet coring. In Proc. 3rd Int. Conf. on Image Processing, Lausanne, Switzerland, Vol. I, pp. 379–382.

  • Srivastava, A., Lee, A.B., Simoncelli, E.P., and Zhu, S.-C. 2003. On Advances in Statistical Modeling of Natural Images. Journal of Mathematical Imaging and Vision, 18:17–33.

    Article  MATH  MathSciNet  Google Scholar 

  • Starck, J.L., Candès, E.J., and Donoho, D.L. 2001. Very high quality image restoration. In Proc. SPIE, Vol. 4478, pp. 9–19.

  • Starck, J.L., Candès, E.J., and Donoho, D.L. 2002. The curvelet transform for image denoising. IEEE Trans. Image Processing, 11:670–684.

    Article  Google Scholar 

  • Tan, S. and Jiao, L.C. 2006a. Ridgelet bi-frame. Appl. Comput. Harmon. Anal., 20:391–402.

    Article  MATH  MathSciNet  Google Scholar 

  • Tan, S. and Jiao, L.C. 2006b. Image denoising using the ridgelet bi-frame. J. Opt. Soc. Amer. A, 23:2449–2461.

    Article  MathSciNet  Google Scholar 

  • Torralba, A. and Oliva, A. 2003. Statistics of natural image categories. Network: Computation in Neural System, 14:391–412.

    Article  Google Scholar 

  • Voloshynovskiy, S., Koval, O., and Pun, T. 2005. Image denoising based on the edge-process model. Signal Processing, 85:1950–1969.

    Article  Google Scholar 

  • Wainwright, M.J. and Simoncelli, E.P. 2000. Scale mixtures of Gaussians and the statistics of natural images. In Advances in Neural Information Processing Systems, S.A. Solla, T.K. Leen, and K.-R. Muller (eds.), pp. 855–861.

  • Wegmann, B. and Zetzsche, C. 1990. Statistical dependence between orientation filter outputs used in a human vision based image code. In Proceedings of Visual Communication and Image Processing, Society of Photo-Optical Instrumentation Engineers, Vol. 1360, pp. 909–922.

  • Yao, K. 1973. A representation theorem and its applications to sphericallyinvariant random processes. IEEE Trans. Inform. Theory, IT-19:600–608.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, S., Jiao, L. Multivariate Statistical Models for Image Denoising in the Wavelet Domain. Int J Comput Vis 75, 209–230 (2007). https://doi.org/10.1007/s11263-006-0019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-006-0019-7

Keywords

Navigation