Skip to main content

Advertisement

Log in

Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This paper explores various aspects of the image decomposition problem using modern variational techniques. We aim at splitting an original image f into two components u and ρ, where u holds the geometrical information and ρ holds the textural information. The focus of this paper is to study different energy terms and functional spaces that suit various types of textures. Our modeling uses the total-variation energy for extracting the structural part and one of four of the following norms for the textural part: L2, G, L1 and a new tunable norm, suggested here for the first time, based on Gabor functions. Apart from the broad perspective and our suggestions when each model should be used, the paper contains three specific novelties: first we show that the correlation graph between u and ρ may serve as an efficient tool to select the splitting parameter, second we propose a new fast algorithm to solve the TVL1 minimization problem, and third we introduce the theory and design tools for the TV-Gabor model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R. 1975. Sobolev Spaces. Pure and applied Mathematics. Academic Press, Inc.

  • Aliney, S. 1997. A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Transactions on Signal Processing, 45(4):913–917.

    Google Scholar 

  • Aubert, G. and Aujol, J.F. 2005. Modeling very oscillating signals. Application to image processing. Applied Mathematics and Optimization, 51(2):163–182.

    MathSciNet  Google Scholar 

  • Aubert, G. and Kornprobst, P. 2002. Mathematical Problems in Image Processing, vol. 147 of Applied Mathematical Sciences. Springer-Verlag, 2002.

  • Aujol, J.F., Aubert, G., Blanc-Féraud, L., and Chambolle, A. 2005. Image decomposition into a bounded variation component and an oscillating component. Journal of Mathematical Imaging and Vision, 22(1):71–88.

    Article  Google Scholar 

  • Aujol, J.F., Aubert, G., Blanc-Féraud, L., and Antonin Chambolle. 2003. Decomposing an image: Application to SAR images. In Scale-Space '03, volume 2695 of Lecture Notes in Computer Science, 2003.

  • Aujol, J.F. and Chambolle, A. 2005. Dual norms and image decomposition models. International Journal on Computer Vision, 63(1):85–104.

    Google Scholar 

  • Aujol, J.F. and Gilboa, G. 2004. Implementation and parameter selection for BV-Hilbert space regularizations, 2004. UCLA CAM Report 04-66.

  • Aujol, J.F., Gilboa, G., Chan, T., and Osher, S. 2005. Structure-texture image decomposition—modeling, algorithms, and parameter selection, 2005. UCLA CAM Report 05-10, ftp://ftp.math.ucla.edu/pub/camreport/cam05-10.pdf.

  • Aujol, J.F. and Kang, S.H. 2004. Color image decomposition and restoration, 2004. UCLA CAM Report 04-73, to appear in Journal of Visual Communication and Image Representation.

  • Bect, J., Aubert, G., Blanc-Féraud, L., and Chambolle, A. 2004. A l1 unified variational framwork for image restoration. In ECCV 2004.

  • Chambolle, A. 2004. An algorithm for total variation minimization and applications. JMIV, 20:89–97.

    MathSciNet  Google Scholar 

  • Chambolle, A. and Lions, P.L. 1997. Image recovery via total variation minimization and related problems. Numerische Mathematik, 76(3):167–188.

    MathSciNet  Google Scholar 

  • Chambolle, A., De Vore, R.A., Lee, N., and Lucier, B.J. 1998. Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage. IEEE Transcations on Image Processing, 7(3):319–335.

    Google Scholar 

  • Chan, T. and Esedoglu, S.2004. Aspects of total variation regularized L1 function approximation, 2004. CAM report 04-07, to appear in SIAM Journal on Applied Mathematics.

  • Combettes, P.L. and Wajs, V.R. 2004. Theoretical analysis of some regularized image denoising methods. In ICIP 04, vol. 1, pp. 969–972.

    Google Scholar 

  • Combettes, P.L. and Wajs, V.R. 2005. Signal recovery by proximal forward-backward splitting. SIAM Journal on Multiscale Modeling and Simulation, in press.

  • Combettes, P.L. and Luo, J. 2002. An adaptative level set method for nondifferentiable constrained image recovery. IEEE Transactions on Image Processing, 11(11):1295–1304.

    Article  MathSciNet  Google Scholar 

  • Daubechies, I. and Teschke, G. 2004. Variational image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising, submitted.

  • Donoho, D.L. and Johnstone, M. 1995. Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90(432):1200–1224.

    MathSciNet  Google Scholar 

  • Dunn, D. and Higgins, W.E. 1995. Optimal Gabor filters for texture segmentation. IEEE Transactions on Image Processing, 4(7):947–964.

    Google Scholar 

  • Ekeland, I. and Temam, R. 1974. Analyse convexe et problmes variationnels. Etudes Mathématiques. Dunod, 1974.

    Google Scholar 

  • Gabor, D. 1946. Theory of communication. J. Inst. of Electrical Engineering, 93(3):429–457.

    Google Scholar 

  • Gilboa, G., Sochen, N., and Zeevi, Y.Y. submitted. Estimation of optimal PDE-based denoising in the SNR sense.

  • Gilboa, G., Sochen, N., and Zeevi, Y.Y. submitted. Variational denoising of partly-textured images by spatially varying constraints.

  • Gilboa, G., Sochen, N., and Zeevi, Y.Y. 2003. Texture preserving variational denoising using an adaptive fidelity term. In Proc. VLSM 2003, Nice, France, pp. 137–144.

  • Gilboa, G., Sochen, N., and Zeevi, Y.Y. 2004. Estimation of optimal PDE-based denoising in the SNR sense, 2004. CCIT report No. 499, Technion, August, see http://www.math.ucla.edu/~gilboa/.

  • Gilboa, G., Sochen, N., and Zeevi, Y.Y. 2005. Estimation of the optimal variational parameter via SNR analysis. In Scale-Space '05, volume 3459 of Lecture Notes in Computer Science, pp. 230–241.

    Google Scholar 

  • Groetsch, C. and Scherzer, O. 2001. Inverse scale space theory for inverse problems. In Scale-Space '01, volume 2106 of Lecture Notes in Computer Science, pp. 317–325.

    Google Scholar 

  • Hintermuller, M. and Kunisch, K. 2004. Total bounded variation regularization as bilaterally constrained optimization problem. SIAM Journal on Applied Mathematics, 64(4):1311–1333.

    MathSciNet  Google Scholar 

  • Jain, A.K. and Farrokhnia, F. 1991. Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 24(12):1167–1186.

    Article  Google Scholar 

  • Le, T. and Vese, L. 2004. Image decomposition using total variation and div(BMO), 2004. UCLA CAM Report 04-36.

  • Malgouyres, F. 2002. Mathematical analysis of a model which combines total variation and wavelet for image restoration. Journal of information processes, 2(1):1–10.

    Google Scholar 

  • Malgouyres, F. 2002. Minimizing the total variation under a general convex constraint for image restoration. IEEE transactions on image processing, 11(12):1450–1456.

    Article  MathSciNet  Google Scholar 

  • Mallat, S.G. 1989. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674–693.

    Google Scholar 

  • Mallat, S.G. 1998. A Wavelet Tour of Signal Processing. Academic Press, 1998.

  • Meyer, Y. 2001. Oscillating patterns in image processing and in some nonlinear evolution equations, March 2001. The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures.

  • Morosov, V.A. 1966. On the solution of functional equations by the method of regularization. Soviet Math. Dokl., 7:414–417.

    MathSciNet  Google Scholar 

  • Mrázek, P. and Navara, M. 2003. Selection of optimal stopping time for nonlinear diffusion filtering. IJCV, 52(2/3):189–203.

    Article  Google Scholar 

  • Nikolova, M. 2004. A variational approach to remove outliers and impulse noise. JMIV, 20(1–2):99–120.

    MathSciNet  Google Scholar 

  • Osher, S., Burger, M., Goldfarb, D., Xu, J. and Yin, W. 2004. An iterative regularization method for total variation based image restoration, 2004. CAM report 04-13, to appear in SIAM Journal on Multiscale Modeling and Simulation.

  • Osher, S.J., Sole, A. and Vese, L.A. 2003. Image decomposition and restoration using total variation minimization and the H-1 norm. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 1(3):349–370.

    MathSciNet  Google Scholar 

  • Porat, M. and Zeevi, Y.Y. 1988. The generalized Gabor scheme of image representation in biological and machine vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):452–468.

    Google Scholar 

  • Rudin, L., Osher, S., and Fatemi, E. 1992. Nonlinear total variation based noise removal algorithms. Physica D, 60:259–268.

    Article  Google Scholar 

  • Starck, J.L., Elad, M., and Donoho, D.L. 2003. Image decomposition: separation of texture from piecewise smooth content, 2003. To appear in IEEE Transactions on Image Processing.

  • Steidl, G., Didas, S., and Neumann, J. 2005. Relations between higher order TV regularization and support vector regression. In Scale-Space and PDE methods in computer vision, R. Kimmel, N. Sochen, J. Weickert Eds, volume LNCS 3459, pp. 515–527.

  • Steidl, G., Weickert, J., Brox, T., Mrazek, P., and Welk, M. 2004. On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides. SIAM J. Numer. Anal., 42:686–658.

    Article  MathSciNet  Google Scholar 

  • Strong, D., Aujol, J.F., and Chan, T.F. 2005. Scale recognition, regularization parameter selection, and Meyer's G norm in total variation regularization, January 2005. UCLA CAM Report 05-02.

  • Tadmor, E., Nezzar, S., and Vese, L. 2004. A multiscale image representation using hierarchical (BV,L2) decompositions. SIAM Journal on Multiscale Modeling and Simulation, 2(4):554–579.

    Article  MathSciNet  Google Scholar 

  • Vese, L.A. and Osher, S.J. 2003. Modeling textures with total variation minimization and oscillating patterns in image processing. Journal of Scientific Computing, 19:553–572.

    Article  MathSciNet  Google Scholar 

  • Yin, W., Goldfarb, D., and Osher, S. 2005. Total variation based image cartoon-texture decomposition, 2005. Columbia University CORC Report TR-2005-01, UCLA CAM Report 05-27.

  • Zibulski, M. and Zeevi, Y.Y. 1997. Analysis of multi-window Gabor-type schemes by frame methods. J. Appl. Comp. Harmon. Anal. 4(2):188–221.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Aujol.

Additional information

First online version published in February, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aujol, JF., Gilboa, G., Chan, T. et al. Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection. Int J Comput Vision 67, 111–136 (2006). https://doi.org/10.1007/s11263-006-4331-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-006-4331-z

Keywords

Navigation