Skip to main content
Log in

Active Contours Under Topology Control—Genus Preserving Level Sets

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present a novel framework to exert topology control over a level set evolution. Level set methods offer several advantages over parametric active contours, in particular automated topological changes. In some applications, where some a priori knowledge of the target topology is available, topological changes may not be desirable. This is typically the case in biomedical image segmentation, where the topology of the target shape is prescribed by anatomical knowledge. However, topologically constrained evolutions often generate topological barriers that lead to large geometric inconsistencies. We introduce a topologically controlled level set framework that greatly alleviates this problem. Unlike existing work, our method allows connected components to merge, split or vanish under some specific conditions that ensure that the genus of the initial active contour (i.e. its number of handles) is preserved. We demonstrate the strength of our method on a wide range of numerical experiments and illustrate its performance on the segmentation of cortical surfaces and blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adalsteinsson, D., & Sethian, J. A. (1995). A fast level set method for propagating interfaces. Journal of Computational Physics, 118(2), 269–277.

    Article  MATH  MathSciNet  Google Scholar 

  • Bardinet, E., Cohen, L. D., & Ayache, N. (1998). A parametric deformable model to fit unstructured 3D data. Computer Vision and Image Understanding, 71(1), 39–54.

    Article  Google Scholar 

  • Bertrand, G. (1994). Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recognition Letters, 15(10), 1003–1011.

    Article  MathSciNet  Google Scholar 

  • Bertrand, G. (1996). A boolean characterization of three-dimensional simple points. Pattern Recognition Letters, 17, 115–124.

    Article  Google Scholar 

  • Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. The International Journal of Computer Vision, 22(1), 61–79.

    Article  MATH  Google Scholar 

  • Dale, A. D., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis, I: segmentation and surface reconstruction. NeuroImage, 9, 179–194.

    Article  Google Scholar 

  • Davatzikos, C., & Bryan, R. N. (1996). Using a deformable surface model to obtain a shape representation of the cortex. IEEE Transactions on Medical Imaging, 15, 758–795.

    Google Scholar 

  • DoCarmo, M. P. (1976). Differential geometry of curves and surfaces. New York: Prentice-Hall.

    Google Scholar 

  • Duan, Y., Yang, L., Qin, H., & Samaras, D. (2004). Shape reconstruction from 3D and 2D data using PDE-based deformable surfaces. In European conference on computer vision (Vol. 3, pp. 238–251).

  • Faugeras, O., & Keriven, R. (1998). Variational principles, surface evolution, PDE’s, level set methods and the stereo problem. IEEE Transactions on Image Processing, 7(3), 336–344.

    Article  MATH  MathSciNet  Google Scholar 

  • Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20, 70–80.

    Article  Google Scholar 

  • Fua, P., & Leclerc, Y. G. (1995). Object-centered surface reconstruction: Combining multi-image stereo and shading. The International Journal of Computer Vision, 16(1), 35–56.

    Article  Google Scholar 

  • Goldenberg, R., Kimmel, R., Rivlin, E., & Rudzsky, M. (2002). Cortex segmentation: a fast variational geometric approach. IEEE Transactions on Medical Imaging, 21(2), 1544–1551.

    Article  Google Scholar 

  • Goldlücke, B., & Magnor, M. (2004). Space-time isosurface evolution for temporally coherent 3D reconstruction. In International conference on computer vision and pattern recognition (Vol. 1, pp. 350–355).

  • Guskov, I., & Wood, Z. (2001). Topological noise removal. In Graphics proceedings (Vol. I, pp. 19–26).

  • Han, X., Xu, C., Braga-Neto, U., & Prince, J. L. (2002). Topology correction in brain cortex segmentation using a multiscale, graph-based approach. IEEE Transactions on Medical Imaging, 21(2), 109–121.

    Article  Google Scholar 

  • Han, X., Xu, C., & Prince, J. L. (2003). A topology preserving level set method for geometric deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(6), 755–768.

    Article  Google Scholar 

  • Hatcher, A. (2002). Algebraic topology. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Jin, H., Soatto, S., & Yezzi, A. J. (2003). Multi-view stereo beyond Lambert. In International conference on computer vision and pattern recognition (Vol. 1, pp. 171–178).

  • Kass, M., Witkin, A., & Terzopoulos, D. (1987). Snakes: active contour models. The International Journal of Computer Vision, 1(4), 321–331.

    Article  Google Scholar 

  • Kriegeskorte, N., & Goeble, R. (2001). An efficient algorithm for topologically segmentation of the cortical sheet in anatomical mr volumes. NeuroImage, 14, 329–346.

    Article  Google Scholar 

  • Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: a high-resolution 3D surface reconstruction algorithm. ACM Computer Graphics, 21(4), 163–170.

    Article  Google Scholar 

  • MacDonald, D., Kabani, N., Avis, D., & Evens, A. C. (2000). Automated 3D extraction of inner and outer surfaces of cerebral cortex from mri. NeuroImage, 12, 340–356.

    Article  Google Scholar 

  • Mangin, J.-F., Frouin, V., Bloch, I., Regis, J., & Lopez-Krahe, J. (1995). From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision, 5, 297–318.

    Article  Google Scholar 

  • Metaxas, D. N., & Terzopoulos, D. (1993). Shape and nonrigid motion estimation through physics-based synthesis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(6), 580–591.

    Article  Google Scholar 

  • Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79(1), 12–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Paragios, N., & Deriche, R. (2005). Geodesic active regions and level set methods for motion estimation and tracking. Computer Vision and Image Understanding, 97(3), 259–282.

    Article  Google Scholar 

  • Pons, J.-P. (2005). Methodological and applied contributions to the deformable models framework. PhD dissertation, Ecole Nationale des Ponts et Chaussées, 18 November 2005.

  • Pons, J.-P., Keriven, R., & Faugeras, O. (2007). Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score. The International Journal of Computer Vision, 72(2), 179–193.

    Article  Google Scholar 

  • Ségonne, F. (2005). Segmentation of medical images under topological constraints. PhD dissertation, Massachusetts Institute of Technology, December 12 2005.

  • Ségonne, F., Pons, J.-P., Grimson, E., & Fischl, B. (2005). A novel level set framework for the segmentation of medical images under topology control. In Workshop on computer vision for biomedical image applications: current techniques and future trends (pp. 135–145).

  • Ségonne, F., Pacheco, J., & Fischl, B. (2007). Geometrically-accurate topology simplification of triangulated cortical surfaces using non-separating loops. IEEE Transactions on Medical Imaging, 26(4), 518–529.

    Article  Google Scholar 

  • Shattuck, D. W., & Leahy, R. M. (2001). Automated graph based analysis and correction of cortical volume topology. IEEE Transactions on Medical Imaging, 20(11), 1167–1177.

    Article  Google Scholar 

  • Taubin, G., Cukierman, F., Sullivan, S., Ponce, J., & Kriegman, D. J. (1994). Parameterized families of polynomials for bounded algebraic curve and surface fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(3), 287–303.

    Article  MATH  Google Scholar 

  • Xu, C., Pham, D. L., Rettmann, M. E., Yu, D. N., & Prince, J. L. (1999). Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Transactions on Medical Imaging, 18, 467–480.

    Article  Google Scholar 

  • Yezzi, A. J., & Soatto, S. (2003). Deformotion: Deforming motion, shape average and the joint registration and approximation of structures in images. The International Journal of Computer Vision, 53(2), 153–167.

    Article  Google Scholar 

  • Zhao, H., Osher, S., Merriman, B., & Kang, M. (2000). Implicit and non-parametric shape reconstruction from unorganized points using a variational level set method. Computer Vision and Image Understanding, 80(3), 295–314.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Ségonne.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ségonne, F. Active Contours Under Topology Control—Genus Preserving Level Sets. Int J Comput Vis 79, 107–117 (2008). https://doi.org/10.1007/s11263-007-0102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-007-0102-8

Keywords

Navigation