Skip to main content
Log in

Regularized Reconstruction of Shapes with Statistical a priori Knowledge

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The reconstruction of geometry or, in particular, the shape of objects is a common issue in image analysis. Starting from a variational formulation of such a problem on a shape manifold we introduce a regularization technique incorporating statistical shape knowledge. The key idea is to consider a Riemannian metric on the shape manifold which reflects the statistics of a given training set. We investigate the properties of the regularization functional and illustrate our technique by applying it to region-based and edge-based segmentation of image data. In contrast to previous works our framework can be considered on arbitrary (finite-dimensional) shape manifolds and allows the use of Riemannian metrics for regularization of a wide class of variational problems in image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boothby, W. M. (1975). Pure and applied mathematics : Vol. 63. An introduction to differentiable manifolds and Riemannian geometry. New York: Academic Press.

    MATH  Google Scholar 

  • Caselles, V., Catté, F., & Dibos, F. (1993). A geometric model for active contours in image processing. Numerische Mathematik, 66, 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  • Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22(1), 61–79.

    Article  MATH  Google Scholar 

  • Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  • Chen, Y., Thiruvenkadam, S., Tagare, H. D., Huang, F., Wilson, D., & Geiser, E. A. (2001). On the incorporation of shape priors into geometric active contours. In 1st IEEE workshop on variational and level set methods in computer vision, July 2001.

  • Chen, Y., Tagare, H. D., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K. S., Briggs, R. W., & Geiser, E. A. (2002). Using prior shapes in geometric active contours in a variational framework. International Journal of Computer Vision, 50(3), 315–328.

    Article  MATH  Google Scholar 

  • Cremers, D., & Schnörr, C. (2003). Statistical shape knowledge in variational motion segmentation. Image and Vision Computing, 21, 77–68.

    Article  Google Scholar 

  • Cremers, D., Tischhäuser, F., Weickert, J., & Schnörr, C. (2002). Diffusion snakes: introducing statistical shape knowledge into the Mumford–Shah functional. International Journal of Computer Vision, 50(3), 295–313.

    Article  MATH  Google Scholar 

  • Cremers, D., Kohlberger, T., & Schnörr, C. (2003a). Shape statistics in kernel space for variational image segmentation. Pattern Recognition, 36(9), 1929–1943.

    Article  MATH  Google Scholar 

  • Cremers, D., Sochen, N., & Schnörr, C. (2003b). Towards recognition-based variational segmentation using shape priors and dynamic labeling. In L. D. Griffin & M. Lillholm (Eds.), Lecture notes in computer science : Vol. 2695. Scale-space 2003 (pp. 388–400). Berlin: Springer.

    Google Scholar 

  • Engl, H. W., Hanke, M., & Neubauer, A. (2000). In Mathematics and its applications : Vol. 375. Regularization of inverse problems. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Fang, W., & Chan, K. L. (2007). Incorporating shape prior into geodesic active contours for detecting partially occluded object. Pattern Recognition, 40(7), 2163–2172.

    Article  MATH  Google Scholar 

  • Fletcher, P. T., & Joshi, S. (2004). Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors. In M. Sonka, I. A. Kakadiaris, & J. Kybic (Eds.), Lecture notes in computer science : Vol. 3117. Computer vision and mathematical methods in medical and biomedical image analysis, ECCV 2004 workshops (pp. 87–98). Berlin: Springer.

    Google Scholar 

  • Fletcher, P. T., Lu, C., & Joshi, S. (2003). Statistics of shape via principal geodesic analysis on lie groups. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (Vol. 1, pp. 95–101).

  • Fletcher, P. T., Lu, C., Joshi, S., & Pizer, S. M. (2004). Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions of Medical Imaging, 23(8), 995–1005.

    Article  Google Scholar 

  • Fritscher, K. D., & Schubert, R. (2006). 3D image segmentation by using statistical deformation models and level sets. International Journal of Computer Assisted Radiology and Surgery, 1(3), 123–135.

    Article  Google Scholar 

  • Fuchs, M., Jüttler, B., Scherzer, O., & Yang, H. (2007). Combined evolution of level sets and B -spline curves for imaging (Technical Report 41, FSP 092). Joint Research Program of Industrial Geometry, January 2007.

  • Gastaud, M., Barlaut, M., & Aubert, G. (2004). Combining shape prior and statistical features for active contour segmentation. IEEE Transactions on Circuits and Systems for Video Technology, 14(5), 726–734.

    Article  Google Scholar 

  • Helgason, S. (1978). In Pure and applied mathematics : Vol. 80. Differential geometry, Lie groups, and symmetric spaces. New York: Academic Press.

    MATH  Google Scholar 

  • Huckemann, S., & Ziezold, H. (2006). Principal component analysis for Riemannian manifolds, with an application to triangular shape spaces. Advances in Applied Probability, 38(2), 299–319.

    Article  MATH  MathSciNet  Google Scholar 

  • Joshi, S., Pizer, S., Fletcher, P. T., Yushkevich, P., Thall, A., & Marron, J. S. (2002). Multiscale deformable model segmentation and statistical shape analysis using medial descriptions. IEEE Transactions on Medical Imaging, 21(5), 538–550.

    Article  Google Scholar 

  • Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes active contour models. International Journal of Computer Vision, 1(4), 321–331.

    Article  Google Scholar 

  • Le, H., & Kendall, D. G. (1993). The Riemannian structure of Euclidean shape spaces: a novel environment for statistics. The Annals of Statistics, 21(3), 1225–1271.

    Article  MATH  MathSciNet  Google Scholar 

  • Leventon, M. E., Grimson, W. E. L., & Faugeras, O. (2001). Statistical shape influence in geodesic active contours. In IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 316–323), June 2001.

  • Michor, P. W., & Mumford, D. B. (2006). Riemannian geometries on spaces of plane curves. Journal of the European Mathematical Society, 8(1), 1–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Michor, P. W., & Mumford, D. (2007). An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Applied and Computational Harmonic Analysis, 23(1), 74–113.

    Article  MATH  MathSciNet  Google Scholar 

  • Miller, M. I., Trouvé, A., & Younes, L. (2006). Geodesic shooting for computational anatomy. Journal of Mathematical Imaging and Vision, 24(2), 209–228.

    Article  MathSciNet  Google Scholar 

  • Mumford, D., & Shah, J. (1985). Boundary detection by minimizing functionals. In Proceedings of the IEEE conference on computer vision pattern recognition (pp. 22–26).

  • Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42(4), 577–684.

    Article  MATH  MathSciNet  Google Scholar 

  • Peterson, P. (1998). In Graduate texts in mathematics : Vol. 171. Riemannian geometry. Berlin: Springer.

    Google Scholar 

  • Rousson, M., & Paragios, N. (2002). Shape priors for level set representations. In A. Heyden, G. Sparr, M. Nielsen, & P. Johansen (Eds.), Lecture notes in computer science : Vol. 2351. Proceedings of the computer vision—ECCV 2002: 7th European conference on computer vision (Part II, pp. 78–92), Copenhagen, Denmark, 28–31 May 2002. Berlin: Springer.

    Google Scholar 

  • Tsai, A., Yezzi, A., Tempany, C., Tucker, D., Fan, A., Grimson, W. E. L., & Willsky, A. (2003). A shape-based approach to the segmentation of medical imagery using level sets. IEEE Transactions on Medical Imaging, 22(2), 137–154.

    Article  Google Scholar 

  • Vaillant, M., Miller, M. I., Younes, L., & Trouvé, A. (2004). Statistics on diffeomorphisms via tangent space representations. NeuroImage, 23, 161–169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Fuchs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, M., Scherzer, O. Regularized Reconstruction of Shapes with Statistical a priori Knowledge. Int J Comput Vis 79, 119–135 (2008). https://doi.org/10.1007/s11263-007-0103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-007-0103-7

Keywords

Navigation