Skip to main content
Log in

A Light Scattering Model for Layered Dielectrics with Rough Surface Boundaries

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

A new model for the scattering of light from layered dielectrics with rough surface boundaries is introduced. The model contains a surface scattering component together with a subsurface scattering component. The former component corresponds to the roughness on the upper surface boundary and is modeled using the modified Beckmann model. The latter component accounts for both refraction due to Fresnel transmission through the layer and rough scattering at the lower layer boundary. One interesting consequence of the model is that the peak radiance is deflected away from the specular direction, a behavior that is also evident in BRDF data from human skin. By allowing independent roughness parameters for each surface boundary and controlling the contributions from the two scattering components in the outgoing radiance using a balance parameter, we can achieve excellent fits of the model to the measured BRDF data. We experiment with BRDF data from skin surface samples (human volunteers) and show that the new model outperforms alternative variants of the Beckmann model and the Lafortune et al. reflectance model. As an application in computer graphics, we also show that realistic images of 3D surfaces can be generated using the new model, by setting the values of its physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AIM@SHAPE. (2004). INRIA shape repository. http://www.aim-at-shape.net.

  • Angelopoulou, E. (2001). Understanding the color of human skin. Proceedings of SPIE, 4299, 243–251.

    Article  Google Scholar 

  • Beckmann, P. (1967). Scattering of light by rough surfaces. In E. Wolf (Ed.), Progress in optics (Vol. VI, pp. 55–69).

  • Beckmann, P., & Spizzichino, A. (1963). The scattering of electromagnetic waves from rough surfaces. New York: Pergamon.

    MATH  Google Scholar 

  • Caron, J., Lafait, J., & Andraud, C. (2002). Scalar Kirchhoff’s model for light scattering from dielectric random rough surfaces. Optics Communications, 207, 17–28.

    Article  Google Scholar 

  • CUReT database. (1996). http://www.cs.columbia.edu/CAVE/curet.

  • Dana, K. J., Nayar, S. K., van Ginneken, B., & Koenderink, J. J. (1997). Reflectance and texture of real-world surfaces. In Proceedings of IEEE CVPR (pp. 151–157).

  • Dickens, M. P., Ragheb, H., Smith, W. A. P., & Hancock, E. R. (2007). Analysis of skin reflectance using Beckmann–Kirchhoff scattering and a cyberware 3030 scanner. In ICCV workshop on photometric analysis for computer vision (pp. 35–42).

  • Donner, C., & Jensen, H. W. (2006). A spectral BSSRDF for shading human skin. In Eurographics symposium on rendering (pp. 409–417).

  • Hanrahan, P., & Krueger, W. (1993). Reflectance from layered surfaces due to subsurface scattering. In Computer graphics, SIGGRAPH93 proceedings (pp. 165–174).

  • Harvey, J. E., Vernold, C. L., Krywonos, A., & Thompson, P. L. (1999). Diffracted radiance: a fundamental quantity in a non-paraxial scalar diffraction theory. Applied Optics, 38, 6469–6481.

    Article  Google Scholar 

  • He, X. D., Torrance, K. E., Sillion, F. X., & Greenberg, D. P. (1991). A comprehensive physical model for light reflection. Computer Graphics, 25, 175–186.

    Article  Google Scholar 

  • Horn, B. K. H. (1986). Robot vision. Cambridge: MIT Press.

    Google Scholar 

  • Igarashi, T., Nishino, K., & Nayar, S. K. (2005). The appearance of human skin (Technical Report: CUCS-024-05). Department of Computer Science, Columbia University, USA.

  • Jensen, H. W., Marschner, S., Levoy, M., & Hanrahan, P. (2001). A practical model for subsurface light transport. In Proceedings of SIGGRAPH (pp. 511–518).

  • Lafortune, E. P. F., Foo, S., Torrance, K. E., & Greenberg, D. P. (1997). Non-linear approximation of reflectance functions. In Proceedings of SIGGRAPH (pp. 117–126).

  • Lu, R., Koenderink, J., & Kappers, A. (1998). Optical properties of velvet. Applied Optics, 37(25), 5974–5984.

    Article  Google Scholar 

  • Lu, R., Koenderink, J., & Kappers, A. (2000). Optical properties of shot fabric. Applied Optics, 39, 5785–5795.

    Article  Google Scholar 

  • Matusik, W., Pfister, H., Brand, M., & McMillan, L. (2003). A data-driven reflectance model. ACM Transactions on Graphics, 22(3), 759–769.

    Article  Google Scholar 

  • Nayar, S. K., Ikeuchi, K., & Kanade, T. (1991). Surface reflection: physical and geometrical perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7), 611–634.

    Article  Google Scholar 

  • Nieto-Vesperinas, M., & Garcia, N. (1981). A detailed study of the scattering of scalar waves from random rough surfaces. Optica Acta, 28(12), 1651–1672.

    MathSciNet  Google Scholar 

  • O’Donnell, K. A., & Mendez, E. R. (1987). Experimental study of scattering from characterized random surfaces. Journal of the Optical Society of America A, 4(7), 1194–1205.

    Article  Google Scholar 

  • Ogilvy, J. A. (1991). Theory of wave scattering from random rough surfaces. Bristol: Hilger.

    MATH  Google Scholar 

  • Oren, M., & Nayar, S. K. (1995). Generalization of the Lambertian model and implications for machine vision. International Journal of Computer Vision, 14(3), 227–251.

    Article  Google Scholar 

  • Oscar & Gollum (2004). In @UCSD magazine (Vol. 1, No. 2), University of California, May 2004. http://alumni.ucsd.edu/magazine.

  • Phong, B. T. (1975). Illumination for computer generated pictures. Communications of the ACM, 18, 311–317.

    Article  Google Scholar 

  • Ragheb, H., & Hancock, E. R. (2006). Testing new variants of the Beckmann–Kirchhoff model against radiance data. Computer Vision and Image Understanding, 102(2), 145–168.

    Article  Google Scholar 

  • Ragheb, H., & Hancock, E. R. (2007). The modified Beckmann–Kirchhoff scattering theory for rough surface analysis. Pattern Recognition, 40(7), 2004–2020.

    Article  MATH  Google Scholar 

  • Reflectance data. (1999). Cornell university program of computer graphics. http://www.graphics.cornell.edu/online/measurements.

  • Stam, J. (1999). Diffraction shaders. In Computer graphics, proceedings of ACM SIGGRAPH 99 (pp. 101–110). New York: ACM.

    Google Scholar 

  • Stam, J. (2001). An illumination model for a skin layer bounded by rough surfaces. In Proceedings of Eurographics workshop on rendering (pp. 39–52).

  • Torrance, K. E., & Sparrow, E. M. (1967). Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America, 57(9), 1105–1114.

    Article  Google Scholar 

  • Vernold, C. L., & Harvey, J. E. (1998). A modified Beckmann–Kirchoff scattering theory for non-paraxial angles. Proceedings of SPIE, 3426, 51–56.

    Article  Google Scholar 

  • Wolff, L. B. (1994). Diffuse reflectance model for smooth dielectric surfaces. Journal of the Optical Society of America A, 11(11), 2956–2968.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ragheb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragheb, H., Hancock, E.R. A Light Scattering Model for Layered Dielectrics with Rough Surface Boundaries. Int J Comput Vis 79, 179–207 (2008). https://doi.org/10.1007/s11263-007-0113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-007-0113-5

Keywords

Navigation